A Learning Algorithm for a Subclass
of Tree Rewriting Systems

M. Jayasrirani!, D.G. Thomas?,
Atulya K. Nagar® and T. Robinson?

! Arignar Anna Government Arts College, Walajapet, India
?Madras Christian College, Chennai - 600 059, India
2dgthomasmcc@yahoo.com
3Department of Computer Science, Liverpool Hope University
United Kingdom

Abstract

Tree replacement / rewriting systems are an interesting model
of computation. They are used in theorem proving, algebraic sim-
plification and language theory. A fundamental property of tree re-
placement systems is the Church-Rosser property which expresses
the fact that interconvertability of two trees can be checked by mere
simplification to a common tree. In this paper, we give a learning al-
gorithm for a subclass of the class of Church-Rosser tree replacement

systems.
Keywords: Tree manipulating system, Church-Rosser tree rewrit-

ing systems, query learning.

1 Introduction

Tree rewriting systems are sets of tree rewriting rules used to compute
by repeatedly replacing equal trees in a given formula until the simplest
possible form (normal form) is obtained. The Church-Rosser property is
certainly one of the most fundamental properties of tree rewriting system.
In this system the simplest form of a given tree is unique since the fi-
nal result does not depend on the order in which the rewritings rules are
applied. The Church-Rosser system can offer both flexible computing and
effecting reasoning with equations and have been intensively researched and
widely applied to automated theorem proving and program verification etc.
(10, 15]. '

JCMCC 79 (2011), pp. 147-161

On the other hand, grammatical inference is concerned with finding
some grammatical description of a language when given only examples of
strings from this languages, with some additional information about the
structure of the strings, some counter-examples or the possibility of inter-
rogating an oracle. The grammatical inference model of Gold [11] called
“identification in the limit from positive data” has inputs of the inference
process as just examples of the target language and there is no interaction
with the environment. Angluin introduced the grammatical inference based
on positive examples and membership questions of computed elements [2].
In [3], Angluin presented another grammatical inference model to identify
regular languages based on membership and equivalence queries with a help
of a teacher (called minimally adequate teacher).

Sakakibara studied the grammatical inference of languages of unlabeled
derivation trees of context-free grammars with the help of structural equiv-
alence queries and structural membership queries [16]. Inference of regular
tree languages from positive examples only has been studied in [20]. The
method of deducting a finite tree automaton from a finite sample of trees
is an adaption of the well-known k-tail method of Biermann and Feldman
(5]

An inference algorithm for learning a k-testable tree language was pre-
sented in [7). Besombes and Marion [4] investigated regular tree language
exact learning from positive examples and membership queries. Fernau [8]
studied the problem of learning regular tree languages from text using the
generalised frame work of function distinguisablity. A theoretical approach
for the problem of learning multiplicity tree automaton has been done in
(1].

In this paper, we investigate Church-Rosser tree rewriting systems as
an alternative to describe and manipulate context-sensitive tree languages.
Church-Rosser tree rewriting systems have many interesting properties such
as decidability of word problem, language description of congruence classes,
etc. We present an algorithm for learning a subclass of the class of Church-
Rosser tree rewriting systems.

Learning is obtained using membership queries. A teacher or an oracle
possesses the knowledge of the Church-Rosser tree rewriting system and
hence the knowledge of the congruence classes and answers the membership
queries related to the congruence classes made by the learner.

2 Preliminaries

We recall the notions of ranked alphabets, trees, tree replacement, tree
composition and substitutions from {10].

Definition 2.1. A ranked alphabet is a set & together with a rank function

148

r: X — N where N denotes the set of nonnegative integers. Every symbol
f in T of rank v(f) = n is said to have arity n. Symbols of arity zero are
also called constants.

Definition 2.2. A tree domain D is a nonempty subset of strings over
N, the set of positve integers, satisfying the following conditions:

1. For each u in D, every prefiz v of u is also in D.

2. For each u in D, for every positive integer i, if ui is in D then for
every j, 1 < j <1, uj is also in D.

Definition 2.3. A Z-tree is a functiont: D — T such that
1. D is a tree domain

2. For every u in D, if n = card({i € Ni|ui € D}), then n = r(t(u))
the arity of the symbol labeling u in t.

Given a tree t, its domain is denoted as dom(t). The elements of the domain
are called nodes or tree addresses. A node u is a leaf if card({i € N4 |ui €
D}) = 0. The node corresponding to the empty tree is denoted as A.

Definition 2.4. Given a treet and a tree address u in dom(t), the subtree
of t at u, denoted as t/u, is the tree whose domain is the set dom(t/u) =
{v € Niluww € dom(t)} and such that t/u(v) = t(uv) for every v in
dom(t/u).

A tree is finite if its domain is finite. The set of finite X-trees is denoted
as Tz.

Let X = {z1,22,...} be a countable set of variables, and let X, =
{z1,Z2,...,Zn} (With Xo = ¢). Adjoining the set X to the constants in
S (each variable is of arity zero), we get the set of trees with variables as
Ts(X). Similarly adjoining X,, we obtain Tp(X,). The set (Tx(Xn))"
of n tuples of trees with variables from X, is denoted as Tg(m,n) and
TE(Xm) = TE(m» 1)'

Given t = (t1,...,tn) in Tg(m,n) and t’ in Tx(n, 1), their composition
or catenation is the tree denoted by
t'-t=1t'(t1,...,ts) and defined by the sets of pairs:

{(v,#'(v))/v € dom(t'), t'(v) & X},

{(uv,ti(v))/u € dom(t'),v € dom(t;),t'(u) = ;1 <i < n}
Ift=(t1,...,tn) and t' = (1,...,t;) € Tx(n,p),

then ¢’ -t = (£ (t1,- .., tn)s- - ., th(t1, - - tn)).

Definition 2.5. Given a tree t1, an address u in dom(t;) and another tree
to, the tree obtained by replacement of to for u in ty is the tree denoted as

149

t1[u — to] defined by the sets of pairs:
{(v,t1(v))/v € dom(t,),u is not a prefix of v}
{(uv, t2(v))/v € dom(t2)}

Given a tree, an independent set of addresses {u),...,u,} in dom(t),
and n trees tj,...,t,, the tree tfuy «— t,...,un « t,] is obtained by si-
multaneous replacement of ¢; at u;.

The height |t| of a finite tree ¢ is defined as hg(t) = 0, root(t) = ¢ for
te XUZo;
hg(t) = 1 + maz{hg(t:)/1 <i < m,t = (t1,t2,...,tm)}.

Given a finite tree 't’, the set of variables var(t) occurring in t is the
finite set

Var(t) = {z; € X/3u € dom(t),t(v) = z;}.

A substitution is any function h : X — T(X). Since Tx(X) is the free
algebra over the set X, every substitution extends uniquely to a unique
homomorphism:

h: Tg(X) — Ts(X), that is, to a function % such that

h(z) = h(z) for every z in X

R(f(t1,...,ta)) = F(R(t1), ., h(ts)) if the rank of f, 7(f) > 1 and
Rh(a) = h(a) for a constant ’a’.

3 Tree Replacement Systems

In this section, we recall the necessary definitions and notations related to
tree rewriting system (10].

Definition 3.1. A set of rules S over ¥ is a subset of Tx(X) x Tx(X).
Each pair (s,t) in S is called a rule and is also denoted as s — t.

The congruence generated by S is the reflexive transitive closure <% of
the relation <5 defined as follows: For any two trees ¢; and t; in Tx(X),
if there is some tree T in Tx(X), some tree address u both in dom(¢;) and
dom(ty), some pair (s,t) such that either s — ¢t or ¢ — s is a rule in S,
some substitution h : Var(s) U Var(t) — Ts(X) and t; = Tlu « h(s)),
to = T[u « h(t)], then we write t; < .

In other words, ¢, is obtained by making a subtree of ¢, (h(s)) which is a
substitution instance of one side of a rule in S(s — ¢,t — s) and replacing
it.

Definition 3.2. Two trees t; and to are congruent (mod S) if t; &* t,.
The class of trees congruent to the tree %’ is [t]s = {t'/t' &% t}.

150

The set of congruence classes {[t]s/t € Tx} forms a monoid under
multiplication, [t]s - [r]s = [tr]s with identity [A]s. This monoid is the
quotient monoid Tx/ <% denoted by M.

Definition 3.3. Given a set of rules S over X, the relation =g is defined
ast =g s, ift < s and hg(t) > hg(s), V t,s € Te(X). =% is the reflezive
transitive closure of =5 and (S, =s) is called a tree replacement (rewriting)
system on X.

Given a tree replacement system (S, =), a tree ¢ is irreducible (mod S)
if there is no tree t’ such that ¢ =5 t'. Let JRR(S) be the set of all

irreducible trees (mod S).

Definition 3.4. A tree replacement system (S,=>g) is Church-Rosser if
for all trees t1,ty with t1 &% to, there exists a tree t3 such that t; =% i3

and ty =% la.

The word problem for a tree replacement system (S, =g) is that given
any two trees s,t in Tx(X), deciding whether s and ¢ are congruent to each
other or not.

The word problem is undecidable in general for any tree replacement
system [10] but it has been proved that the word problem for any Church-
Rosser tree replacement system is decidable.

Example 3.1. Let the trees q,s,t,8',t',t; and t2 be in Tg(X) where T =
{a,b,c,d,z,y} and X = {z,y}. Let (s,t) or (t,s) be a rule in S. Let
q = a(b(a(c, d), ¢),a(b(d, c),d)) be a tree in Tx(X) as shown in the Figure 1.

Figure 1: Tree ¢

Let s = a(z,y) and t = a(c,b(y,z)) be two trees as shown in the Fig-
ure 2.

151

Figure 2: Trees s and ¢

Let tree s’ = h(s) = a(c,d) be the substitution instance of s and tree
t' = h(t) = alc,b(d,c)), the substitution instance of t as shown in the
Figure 3.

c d

Treet'= l;(t)

Figure 3: Trees s’ and ¢

Tree t, is obtained from tree q by replacing the subtree at node 2 of the
tree g by the tree s'. Similarly tree ty is obtained by replacing the subtree
at the node 2 of the tree q by the tree t'. These two trees t and ty are
represented in Figure 4.

It can also be seen that t is obtained if the subtree h(s) of t; at node 2
is replaced by h(t). Similarly t, is obtained if the subtree h(t) of t; at node
2 is replaced by h(s).

Hence t; &g to.
Let S be a tree rewriting system on X.
Let RED(S) be the set of all reducible trees with respect to S. That is

RED(S) = Tg(X) — IRR(S).

152

Figure 4: Trees t; and ¢,

Church-Rosser tree rewriting systems 7" have many interesting proper-
ties in connection with decision problems and formal language theory.

Definition 3.5. A tree rewriting system T on ¥ is called reduced if for
every rewriting rule (s,t) € T, t is an irreducible tree with respect to T' and
s is an irreducible tree with respect to T — {(s,t)}.

Definition 3.6. Let T be a tree rewriting system on X. For a tree t €
Ts(X), s is called a normal form of t, if s € [t]r and s is an irreducible
tree with respect to T.

We now explain that given a tree replacement system R there is an
algorithm to reduce every tree to an irreducible tree. This can be used to
show that there is an algorithm for deciding whether two trees are congruent
modulo a finite Church-Rosser tree replacement system S. So it is necessary
to generalize the notion of a left most reduction to trees. For trees, there
are two ways of reduction namely top most reduction and bottom most
reduction. For our purpose, the notion of bottom most reduction seems to
be adequate.

Let R be a tree replacement system such that for every tree s, there is
atmost one tree ¢t with s — ¢ is a rule in R.

It is assumed that there is a total ordering on each subset of rules
{s' = t' € R| for some s — t in R, hg(s’) = hg(s)}.

Given a tree tp, let us imagine that we scan ¢y from bottom up, trying
to match a subtree r of ¢y of height one with a substitution instance of the
left hand side of a reduction s — ¢ in R. Then if there are at least two
rules s — ¢ and s’ — t’ such that ¢, can be written as tg = sp{u — r] where
r=8(t1,...,tm) = §'(t],...,t,). We will use the greatest rule s — ¢ in the

153

total ordering of all rules such that r = s(ty,...,tm) for which s has largest
height. After having reduced r to r' = t(¢,...,tm), we repeat this process
with so[u « r’]. This process forces the rules to be applied in a certain
order called bottom up normal order. Thus we obtain an irreducible tree
from tg.

Lemma 3.1. For any tree rewriting system T that is Church-Rosser, there
is a unique reduced tree rewriting system T that is Church-Rosser and
equivalent to T. Furthermore, one can effectively construct T' from T.

Lemma 3.2. Let T and T' be two equivalent tree rewriting systems. If T
is Church-Rosser and IRR(T) = IRR(T"), then T" is also Church-Rosser.

4 Procedure for Learning Church-Rosser Tree
Rewriting System R

Let T be a given ranked alphabet. We consider Church-Rosser tree rewrit-
ing system T on X. Let My = {L,Ls,...,Ln} be the quotient monoid
where each L; is a congruence class of a tree with respect to T. Then,
the congruence relation % is of finite index and so each congruence class
L; (1 £ i < n) is a regular tree.language [6]. Algebraic properties of a
Church-Rosser tree rewriting system T for which M7 is finite enable us
to present an efficient learning procedure for congruence classes with only
membership queries. Since the congruence of T partitions the set T3 (X)
into disjoint congruence classes, any tree in Tx(X) is in only one congru-
ence class with respect to T. So, the membership query for congruence
classes is meaningful and reasonable.

The unique reduced Church-Rosser tree rewriting system R equivalent
to T is then obtained. The learning procedure to obtain R consists of two
parts, one for TRR(R) and the other for the tree rewriting system R.

For any tree t € Tx;(X) given as input, the oracle answers membership
query by producing an n-tuple that contains n — 1 zeros and one 1 since
Mr = Mg = {L1,Ls,...,L,}. The learner gets the value of n when the
empty tree A is given as input for membership query. The input is a tree
t € Ty and the output is an n tuple g(t) = (ki1, k2,...,k,) where k; =1 if
teL;iandt; =0ift € L; (1 <i<n). Let p; be the projection defined by
pi(z) = z; for any n-tuple z = (z1,Z2,...,%5), 1 <i < n.

Learning Procedure

Learning is obtained using membership queries. A teacher or an oracle
possesses the knowledge of the Church-Rosser tree rewriting system and

154

hence the knowledge of the congruence classes and answers the membership
queries related to the congruence classes made by the learner.

Membership queries are made to the oracle for the input trees, starting
with the empty tree A, which is an irreducible tree with respect to R and
continued with the trees in T2. Let ¢; = A and suppose ¢y, t3, ... ,t, are the
lexicographically ordered trees in T2 where s—1 is the number of constants
in Z.

A tree t; (2 < i <) belonging to L; for some j (1 < j < n) is
an irreducible tree with respect to R whenever t; € L; but ¢, ¢ L, for
p=12,...,7— 1. Hence by membership queries all the irreducible trees
in TR with respect to R are obtained.

The process is continued by making membership queries for trees in T3
(T2 N IRR(R)), the set of all trees of height one with subtrees in T2 N
IRR(R), which can be lexicographically ordered.

Thus the process gives irreducible trees with respect to R in T and
T3. In general the process is continued recursively by making membership
queries for trees in T3 (T%~! N IRR(R)), the set of all trees of height r,
with subtrees in T"'1 NIRR(R), r 2 1. This process terminates when each
L; receives an 1rreduc1ble tree with respect to R.

The algorithm for forming irreducible trees with respect to R, termi-
nates when the process for finding trees with respect to R in T,’f ends,
when k = maz{hg(t)/t € IRR(R)} since (a) IRR(R) is finite (b) each L;
(1 £ j £ n) contains exactly one irreducible tree with respect to R and
(c) irreducible trees with respect to R are shortest trees in their respective
classes Ly, La,..., Ly,.

To identify the unique, reduced Church-Rosser tree rewriting system R
equivalent to the unknown tree rewriting system T, the learner performs
again the membership queries as in the procedure for the lexicographically
ordered trees in the set T4 (IRR(R)) — IRR(R), where TA(IRR(R)) is the
set of all trees with subtrees in JRR(R) in the next level.

The learning algorithm then forms the tree rewriting system

= {(s, t)/s € TA(IRR(T)) — IRR(T),t € IRR(T),s and t
both belong to L; for some j(1 < j < n) on E}

From S a reduced tree rewriting system S’ equivalent to S on X is obtained
and thus the learner obtains R which is same as S’ on L.

An example run

155

We illustrate the procedure for learning the reduced Church-Rosser tree
rewriting system
R = {(b(c),c), (b(d), d), (alc,¢),), (a(d, d),d), (a(c,d), c), (a(d,c),d)} on T =
{a,b,c,d} with arities of a,b,¢,d as 2, 1, 0, 0 respectively. That is p(a) = 2,
p(b) =1, p(c) = p(d) = 0.

MR = {[A]R, {C]R, [d]R} where L1 = [A]Ra Lz = [C]R and L3 = [d]R

Membership queries are made for the trees A,c¢,d belonging to T
and the oracle produces the answers g(A) = (1,0,0), g(¢) = (0,1,0),
q(d) = (0,0,1) for which the learner obtains TRR(R) as {A,c,d}. Again
membership queries are made for the trees in the set T} = {b(c), b(d),
a(c,c¢), a(d,d), a(c, d), a(d,c)} and the oracle produces the answers:

q(b(c)) = (0,1,0), q(b(d)) = (0,0,1)
g(a(e, c)) = (0,1,0), g(a(d,d)) = (0,0,1)
Q(G(C, d)) = (Or 01 l)a q(a'(d) C)) = (01 0, 1)

From which the learner obtains

S = {(b(c), c), (b(d), d), (a(c, c), ¢), (a(d,d),d), (a(c,d),c), (a(d, c),d)}. The
reduced tree rewriting system S’ equivalent to S is then obtained as S’ =
S=R.

Learning Algorithms

Algorithm for Learning IRR(R)
begin
IRR(R)=¢
Input the empty tree t; = A
n = number of entries in g(A)
L, = {A}
IRR(R) = {A}
N =1
For j=2ton,
Initialize: L; = ¢; N; =0
Input trees t; (i =2,3,...) ordered according to height (trees of
same height are lexicographically ordered) such that
t; € TRUTA(TE ' NIRR(R)), (r > 1)
while N; = 0 for some j do

begin
For j=1tondo
begin
If p,(g(t:)) = 1 do
begin

Lj = LJ' U {t,‘}

156

If N; =0 do

begin
N Fi = 1
IRR(R) = IRR(R) U {t;}
end
end
end
end
output JRR(R)

end.

Algorithm for Learning R
begin
Input trees ¢; (i =1,2,3,...) ordered according to height (trees of
same height are lexicographically ordered) such that
t; € T&(IRR(T)) — IRR(T)
Initialize: S = ¢
For s € TL{(IRR(T)) — IRR(T)) do

begin
For t € IRR(R) do
begin
If p;(g(s)) = p;(a(t)) = 1 for some j (1 < j < n), then
§S=8u{(s1)}
end
end
Initialize: §' = §
begin
For (s,t) € §', do
begin

If (s1,t1) € S" — {(s,t)} such that s has s; as a subtree, then
S'=8"—{(s,t)}
end
end
output: R =5’
end.

Correctness of the Learning Algorithm

We establish the correctness of the learning algorithm by showing that S
and R are equivalent and S is Church-Rosser. Also, if S’ is a reduced tree

rewriting system equivalent to S, then S’ = R.

Lemma 4.1.
IRR(S) = IRR(R).

157

Proof.

IRR(S) = Tg(X) — RED(S)
= Tx(X) — (Ts(X) — IRR(R))
= IRR(R)

Lemma 4.2.
t) &g to impliesty Sgto forty,ta € Tx(X).

Proof.

It is enough to prove that t; <>g t; implies t; &g to for ¢y,t2 € Ts(X).
Suppose t; g ty holds. Then t; = t/st” and t5 = t'tt” where either

(s,t) € Sor (t,8) € S and t',t" € Tx(X). By the definition of S, s and ¢

both belong to L; for some i (1 <i < n). Thatis s Spt=t Spty. O

Lemma 4.3.
Cardinality of Mg is n. That is card(Ms) = n.

Proof.

IRR(S) = {t1,t2,...,tn}. Here no two ¢;’s are congruent with respect to
S. The reason is as follows. Suppose t; €5 t; for some i and j, 1 < i < n,
1<j<mn,i#j. Then by Lemma 4.2, ¢; &r t;. This is not possible since
R is Church-Rosser and ¢; and t; are irreducible trees with respect to R.
Thus, every congruence class with respect to S has exactly one ¢;. Since
card(IRR(S)) = n, we have card(Ms) = n. 0

Lemma 4.4.
For s,t € Ts(X), s &pt implies s &g t.

Proof.
Suppose for s,t € Te(X), s &g t holds. Since R is Church-Rosser, there

exists exactly one t; € IRR(R) such that s Sp ¢; and t g t;. That

is s &g t; and t; &g t. Since every congruence class with respect to
S contains exactly one irreducible tree with respect to S and JRR(S) =

IRR(R), let t; € [s]s. This implies that ¢; &g s and hence t; &5 s which
means ¢; &g t;. This is impossible since R is Church-Rosser. Hence j = i.
That is ¢; € [s]s. Similarly we can show that ¢; € [t|s. Thus t; &5 s and
t; &5 t together imply that s &g t. 0

Theorem 4.1.
R and S are equivalent.

158

Proof.
The equivalence of R and S follows from Lemma 4.2 and Lemma 4.4. [

Theorem 4.2.
S is Church-Rosser.

Proof.
The Church-Rosserness of S follows from Lemma 3.2, Lemma 4.1 and The-

orem 4.1. (]

Theorem 4.3.
S’ = R where S’ is a reduced tree rewriting system equivalent to S.

Proof.
By Lemma 3.1 and Theorem 4.1, S’ is unique and Church-Rosser. Since $’

is equivalent to S, which in turn is equivalent to R and R is reduced. By
applying Lemma 3.1 once again, we obtain §' = R. O

Time Analysis

Here, the number of trees to be processed through membership query for

learning ITRR(R) can be found.

We can show that the time taken by the learning algorithm to learn
IRR(R) is polynomial in the number of congruence classes, the arities of
members of £ and the number of elements in £. We assume that the oracle
requires a single unit of time to answer each membership query.

We find that the number of trees to be processed through membership
query for learning ITRR(R) is less than or equal to 1 + m(n + 2) where
m = card T} which is fixed and n is the total number of congruence classes
with respect to R. The trees to be processed are in the set
F = {A}UTRUTL(TNIRR(R))UTL(TENIRR(R))UTA(TENIRR(R))V
<« UTLTE™! N IRR(R)) where 7 = maxz{hg(t)|{t € IRR(R)} and if
k = card 7% then

card F =1+k+m+ms; + -+ +msq_;, where s; = card T&(T% N IRR(R))
=1+k+m+m(sy+--+5r-1)
<l4+m+m+m(s;+- -+ 8-1) (where k <m)
=1+2m+m(n—so — sr)
<1+4+2m+mn
=1+m(n+2).

159

Conclusion

In this paper we propose a new method to learn a class of tree rewriting
systems which yield many decidable properties in the area of tree rewriting
systems. It is worth examining to find a learning algorithm to learn the
whole class of all Church-Rosser tree rewriting systems.

References

(1] Amaury Habrard and Jose Oncina, Learning multiplicity tree au-
tomata, ICGI 2006, (2006), 268-280.

(2] D. Angluin, On the complexity of minimum inference of regular sets,
Information and Control, 39 (1978) 337-350.

[3] D. Angluin, Learning regular sets from queries and counter examples,
Inform. Comput., 75 (1987), 87-106.

[4] J. Besombes and J.Y. Marion, Learning tree languages from positive
examples and membership queries, Theoretical Computer Science, 382

(2007), 183-197.

[5] A.-W. Biermann and J.A. Feldman, On the synthesis of finite state ma-
chines from samples of behavior, IEEE Trans. Comput. C-21 (1972),

592-597.

[6] H. Comon, M. Dauchet, R. Gulleron, F. Jacquemard, D. Lugiez, S.
Tison and M. Tomasi, Tree automata techniques and applications,
Available on : http://www.grappa.univ-lille3.fr/tata, (2002).

[7) Damian Lopez, Jose M. Sempere and Pedro Garcia, Inference of re-
versible tree languages, IEEE Transactions on Systems, Man and Cy-
bernetics, Part B, 34(4) (2004), 1658-1665.

[8] H. Fernau, Learning tree language from text, ITA, 4 (2007), 351-374.

[9] Z. Fulop, J. Attila and S. Vagvolgyi, Minimal equational representa-
tions of recognizable tree languages, Acte Infomatica, 34 (1997), 59-84.

[10] J.H. Gallier and R.V. Book, Reductions in tree replacement systems,
Theoretical Computer Science, 37 (1985), 123-150.

[11] M. Gold, Language identification in the limit, Information and Con-
trol, 10 (1967) 447-474.

160

(12] G. Heut, Confluent reductions: abstract properties and applications
to term rewriting systems, Journal of the Association for Computing
Machinery, 27(4) (1980), 797-821.

(13] M.R.K. Krishna Rao, Some classes of term rewriting systems inferable
from positive data, Theoretical Computer Science, 397 (2008), 129-
149,

(14] R. McNaughton, P. Narendran and F. Otto, Church-Rosser Thue sys-
tems and formal languages, Journal of the Association for Computing
Machinery, 35(2) (1988), 324-244.

[15] B.K. Rosen, Tree-manipulating systems and Church-Rosser theorems,
Journal of the Association for Computing Machinery, 20(1) (1973),
160-187.

[16] Y. Sakakibara, Learning context-free grammars from structural data
in polynomial time, Theoretical Computer Science, 76 (1990), 223-242.

[17) K. Salomaa, Deterministic tree pushdown automata and monadic tree
rewriting systems, Journal of Computer and Systems Sciences, 37

(1988), 367-394.

(18] D.G. Thomas, S.C. Samuel, P.J. Abisha and K.G. Subramanian, Tree
replacement and public key cryptosystem, Lecture Notes in Computer
Science, 2551 (2002), 71-78.

[19] D.G. Thomas, R. Siromoney, K.G. Subramanian and V.R. Dare, Thue
systems and DNA - A learning algorithm for a subclass, Lecture Notes
in Artificial Intelligence, 744 (1993), 314-327.

[20] Timo Knuutila and Magnes Steinby, The inference of tree languages
from finite samples - an algebraic approach, Theoretical Computer Sci-
ence, 129 (1994), 337-367, Elsevier.

161

