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Abstract

Betweenness is a centrality measure based on shortest paths, widely
used in complex network analysis. Betweenness centrality of a vertex is
defined as the fraction of shortest paths that pass through that vertex.over
that between all pairs of vertices It measures the control a vertex has over
communication in the network, and can be used to identify key vertices in
the network. High centrality indices indicate that a vertex can reach other
vertices on relatively short paths, or that a vertex lies on a considerable
fraction of shortest paths connecting pairs of other vertices. In this paper
we find betweenness centrality of honeycomb mesh which has important
applications in mobile networks.

Keywords: interconnection network, honeycomb mesh, betweenness cen-

trality.

1 Introduction

Real-world networks have been a field of study and research for a long time.
They are represented by a graph G = (V, E) of vertices V and edges E. A
common example is the internet router topology where routers are vertices
and links between routers are edges. One would like to know which routers
or which links are important, e.g. how severe is the breakdown of a speci-
fied router or link. So centrality measures are required to label each vertex
or edge with a number indicating its importance. But there is neither a
mathematical definition for important nor for severe. So since 1950’s many
centrality indices have evolved, each with specific applications. Some ap-
plications include the facility location problem, highway-node routing, web
page ranking or prediction of polls. A centrality index is a structural
index for vertices or edges, which is based on shortest paths. Some central-
ity indices are closeness centrality, stress centrality, graph centrality, reach
centrality and betweenness centrality. Of these measures, betweenness has
been extensively used in recent years for the analysis of social interaction
networks, as well as other large-scale complex networks [1]. It is computa-
tionally expensive to determine betweenness exactly; currently the fastest
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known algorithm by Brandes requires O(nm) time for unweighted graphs
and O(nm + n?logn) time for weighted graphs, where n is the number of
vertices and m is the number of edges in the network [2]. In this paper we
calculate the exact betweenness centrality of vertices and a set of vertices
which induces a hexagon in a honeycomb network.

2 An Overview of the Paper

First introduced in its modern form by Freeman [6], betweenness centrality
is essentially a measure of how many geodesic paths pass through a given
vertex. In otherwords, in a social network for example, the betweenness
centrality measures the extent to which an actor "lies between" other actors
in the network, with respect to the network path structure. As such, it is
a measure of the control that actor has over the flow of information in the
network. For large graphs, for instance a street graph of western Europe
with approximately 18 million vertices and 22 million edges, exact calcu-
lation is almost unfeasible with only a small amount of time. Bader and
Madduri [1] introduced parallel algorithms to calculate exact betweenness
centrality.

There are two ways in which one might naturally extend vertex
betweenness centrality to sets of vertices. The first is to define the be-
tweenness of a set in terms of geodesic paths that pass through atleast one
of the vertices in the set, and the second, in terms of geodesic paths that
pass through all vertices in the set. The former notion was introduced by
Everett and Borgatti [5] called group betweenness centrality. The latter was
introduced by Kolaczyk et.al [4] called co-betweenness centrality. In this
paper we study the betweenness centrality measure of a vertex in a honey-
comb mesh and extend it to group betweenness centrality of a hexagon in
the network.

3 Honeycomb Mesh-An Interconnection Net-
work

In an interconnection network where processors are interconnected accord-
ing to a certain topology, communications among processors are accom-
plished by sending messages along interconnection links.

Honeycomb mesh is an interconnection network used in wireless net-
works and its dual is used for cellular phone station placement. It is also
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used for the representation of benzenoid hydrocarbons in chemistry, com-
puter graphics and image processing. Moreover, the number of papers on
honeycomb appearing in the literature now shows that it is an attractive
network [8].

Figure 1: Honeycomb mesh H Mj; of dimension 3

Honeycomb meshes can be built from hexagons in various ways. The
simplest way to define them is to consider the portion of the hexagonal
tessellation which is inside a given convex polygon. Honeycomb (hexago-
nal) meshes can be built as follows: one hexagon is a honeycomb mesh of
dimension one, denoted by HM;. The honeycomb mesh H M; of dimension
two is obtained by adding six hexagons to the boundary edges of HM;. In-
ductively, honeycomb mesh HM,, of dimension n is obtained from HM,_;
by adding a layer of hexagons around the boundary of HM,_;. For in-
stance, Figure 1 is a honeycomb mesh of dimension three. Alternately, the
dimension n of HM,, is determined as the number of hexagons between the
center and boundary of HM, (inclusive).

4 Honeycomb Parellelogram

We shall introduce a new convenient coordinate system for the honeycomb
mesh. Let O be the centre of HM,. Let us label the midpoints of edges
of HM; in the clockwise direction as u;,vy, w1, us,v2 and wy as shown in
Figure 2. Draw lines passing through u; and up, w; and we and v; and
ve and call them as the X-axis, Y-axis and Z-axis respectively. It is to
be noted that the three axes X,Y,Z are at mutual angle of 120 degrees
between any two of them and their point of intersection is O.

Delete all the edges of HM,, perpendicular to X-axis. This leaves n
paths on either side of the X- axis, call them X-lines and label them
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Figure 2: Honeycombmesh HM; of dimension 1

beginning from the path closest to X-axis sucessively to the paths far-
thest to X-axis as X = 1,3,...,2n — 1 on one side of X-axis and as
X = -1,-3,...,—(2n — 1) on the other side of the X-axis as shown in
3 (a). Repeat the same argument with edges perpendicular to Y-axis and
Z-axis to obtain Y-lines and Z-lines with label Y = £1,+3,...,£(2n - 1)
and Z = +1, 43, ..., £(2n — 1) respectively. See Figure 3 (b) and (c).

Figure 3: (a). X-lines (b). Y-lines (c). Z-lines

The coordinate of a vertex u in HM,, is the triple (¢, 7, k) when u is
the point of intersection of the lines X = 4,Y = j and Z = k. The lines
X =14i,Y = j and Z = k divide the plane of the honeycomb mesh into
six zones. Consider another vertex v = (¢, 5/, k') in the honeycomb mesh.
Without loss of generality, let 2 > i. Then the vertex v lies in zone I when
7' > jand k' > k, in zone II when j' > j and k' < k or in zone III when
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j' < j and k' < k. See Figure 4.

Figure 4: Six zones of honeycomb with vertices v and v

If v is in Zone I, the X-lines and Z-lines passing through « and v alone
are sufficient to construct a parallelogram with « and v as the diagonally
opposite vertices and the segments of the X and Z- lines as the boundary
lines. The vertices in this parallelogram are addressed as 2-tuples using
only the X-lines and the Z-lines. A similar same argument holds if v is
in Zone II and Zone III. Let the parallelogram be denoted by Q... There
are three types of parallelograms depending upon the position of v in the
honeycomb mesh.

The parallelogram ¢, bounded by X and Z- lines is called as an
a-parallelogram, the parallelogram bounded by Y and Z-lines as a §-
parallelogram and the one bounded by X and Y- lines as a - parallelogram.
See Figure 5.

Figure 5: a-parallelogram, 8-parallelogram, y-parallelogram

Thus, given any two vertices u and v of HM,, we can form a honeycomb
parallelogram with u and v as the diagonally opposite vertices. This honey-
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comb parallelogram plays a crucial role in finding the number of geodesics
between the vertices u and v.

5 Main Results

The study of betweenness centrality of a vertex v in a graph G [11] and
group betweenness centrality of a set S C V(G) [5] has been an attractive
area of research in social networks, computer networks and so on [1].

In the sequel let d(s,t) denote the shortest distance between vertices s
and ¢ in a graph G, o,: denote the number of geodesics between the vertices
s and t and o, (v) denote the number of geodesics between s and ¢ passing
through vertex v. Without loss of generality all results are discussed with
respect to a-parallelograms.

Definition 1 Betweenness centrality of a vertez v in a graph G is defined
as BC(v) = Y 8ot(v) where 5 (v) = 22,
sF#vF#ELEV

Definition 2 Betweenness centrality of a set S C V(G) is defined as
BC(S) = Y 6a(S) where §5(S) = T2 where 05t(S) denotes the

8,tEVS
number of geodesz'cs from s to t passing through at least one vertex of S.

Lemma 1 For vertices s and t in H M,,, all shortest paths between s and
t lie in Qg

Proof. Stretching the boundary lines of the honeycomb parallelogram ¢,,
into straight lines yields a parallelogram in the plane. Since any parallelo-
gram in the plane is convex, it contains all shorest paths between s and ¢.

O
. The following lemma is evident from the addressing scheme.

Lemma 2 Let s = (3,5),t = (k,l). An a-parallelogram g4 is composed
of M number of hezagons between two sucessive X-lines and JS‘:i).l
number of hexagons between two sucessive Z-lines.

(55 +<f—ﬂ) )

Theorem 1 Let s = (i,j) andt = (k,l). Then a,t=( ( )
2
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Proof. By lemma 2, there are J_(%)_l number of hexagons between two

sucessive X- lines and J—“—;—JM number of hexagons between two sucessive Z-
lines. Hence the number of geodesics betweem s and ¢t is

k—1 -7
e (B0

Remark 1 For our convenience let us denote o, = T(i,5),(k,1) @S Tijikl-

Theorem 2 Let s = (i,7),t = (k,l) and v = (a,b). Then

la—i] 6=3l k—a I—b
G“(”)z(( ? o)’ ))(( ? o ))

Proof. We have 0y ki(a,b) = Oijab X Tap ki
_( ¢+t ) ( dh+dh ) g
(&) )

We need the following notations to determine the betweenness centrality
measure of Honeycomb mesh HM,.

Notation 3 Let v be a vertez in a honeycomb mesh HM,,. The X and
Y -lines through v partition HM, into four sub honeycomb meshes A, B.C
and D and four paths E1, Ea, E3 and E4 as shown in Figure.6.

E;

Figure 6: A vertex v partitions H M, into four sub honeycomb meshes and
four paths
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Notation 4 Let X = Y X; where X; = {(s,t) : s € A,t € Eq}, X5 =

i=1

{(s,t) : s € At € D}, X3 = {(s,t) : s € At € Eg}, X4 = {(s,t) : s €
E;,t € D}, X5 = {(s,t) : 3 € E3,t € Ep}, X = {(s,t) 1 8 € Ey,t € Ey},
X:={(s,t): s€ Ey,t € D}, Xg ={(s,t): s€ B,t € Ey}, X9 = {(s,t) :
s € B,t e C}, X0 = {(s,t) :8€ B,te E3}, X = {(3,t) 18 € Eyte
O},Xm = {(s,t) 18 € Ey,te Ea},xls = {(3, t) :8€ E)te E4},X14 =
{(s,t) :8 € Byt € C},X15 = {(S,t) :8 € Ey,t e E3},X15 = {(s,t) :
8€E1,t€E2}.

Theorem 5 Let v = (a,b) be any vertez in HM,. Then the betweenness
centrality of v is given by

() + (=) ) ( (5 + ()
BC(,,)=2( Jed ™) (5l

o (M)

where s = (¢, 7) and k = (k,1).

Proof. It is clear that o5.(v) = 0 if v € V\X. On the other hand, o,:(v)
contributes if v € X.Hence

(580 (59) ) (52229
BCw)= ¥ ( 8]&2__6 )( 81'«_;21) ).D

o ()

Notation 6 Let Z = (ajaz203a4a506) be a hezagon in a honeycomb mesh
HM, where a; = (a,b,¢),as = (a,b,c—2),a3 =(a,b—2,c—2),a4 = (a—
2,b—-2,c-2),a5 = (a—2,b—2,¢),a6 = (a—2,b,¢). It is bounded by X = a,
X=a-2,Y=b0Y=b-2,Z=candZ =c—2. The X-lines and Y -lines
partition HM,, into eight subhoneycomb meshes A,B,C,D, E,,E,E; and
E, as shown in the Figure 7.

Lemma 3 For any hezagon Z in the honeycomb mesh HM,, 04(Z) =
osi(a3) + o5(ag) where s € A,t € D.
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Figure 7: A hexagon Z partitions H My into eight sub honeycomb meshes
and a hexagon Z

Proof. The geodesics that pass through as must also pass through as.
Similarly the geodesics that pass through ag must pass through as. There-
fore in finding the geodesics passing through Z, the contribution of geodesics
passing through a; and as is null. So the geodesics passing through o are
partitioned into paths that pass through s and those that pass through
ag.Thus the geodesics passing through ag and o contain all geodesics pass-
ing through «;. Similarly all the geodesics passing through a4 are nothing
but paths passing through aj or ag. So

05t(Z) = (0st(@1) + 0st(@s) + st(a) + ost(ap)) — gse(1) — ose(ag).

Hence 05:(Z2) = aat(ag) + o5 (o). I:I16

In what follows S = |J X; and T'= |J X; form a partition of X.

i=1 i=8

Theorem 7 Let Z be any hexagon in HM,. Then the betweenness cen-
trality of Z is given by

(Ib—g—jl) o (la;il) (L!—g+21 I, (|k;a|)

= () M
(S (s ()
a-—22—£ ) k—;+2 )
BC(Z)=3§S ( (l;j n kz—i) )
J_kg_il.
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where s = (¢, 5),t = (k,l) and {S,T} is a partition of X.

Proof. For s,t € V \ X,0,(Z) = 0. Since s,t € X; for1 < i < 16
contribute to BC(Z), repeated application of Lemma 3 proves the result.
0

6 Conclusion

In this paper we have introduced honeycomb parallelograms which play a
crucial role in finding the number of geodesics between any two vertices in
a honeycomb mesh. Also exact betweenness centrality of a vertex and a
set of vertices which induces a hexagon in a honeycomb mesh have been
obtained.
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