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Abstract A connected graph G(V,E) is said to be (a,d)-antimagic if
there exist positive integers a and d and a bijection f: £ — {1,2,...,|El}
such that the induced mapping gz V — N defined by g{(v) =
L <1y f(e), where I(v) = {ee E/ e is incident to v}, ve V is injective and
g(V) = {a,a+d,a+2d,...,a+(IVI-1)d}. In this paper, using partition, we
prove that (i) the 1-sided infinite path P, is (1,2)-antimagic (ii) path
Pyne1 is (n,1)-antimagic and (iii) (n+2,1)-antimagic labeling is the
unique (a,d)-antimagic labeling of Cy,,; and graphs K, + (K, U K;), Py,
and C,, are not (a,d)-antimagic. For a,de N, on (a,d)-antimagic graph G,
we obtain a new relation, a+(p-1)d < A(2q-A+1)/2. Using the results on
(a,d)-antimagic labeling of C,;, and C,,,, we obtain results on the
existence of (a,d)-arithmetic sequences of length 2n and 2n+l,
respectively.
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1. Introduction

In 1990, Ringel {11] introduced the concept of antimagic graph. Each
edge labeling f of a graph G(V,E) from 1 through | E | induces a vertex
labeling gr where g{v) is the sum of the labels of all edges that are
incident upon vertex v, ve V. Labeling f is called antimagic if and only
if the values gg(v) are pair-wise distinct for all vertices v of G. Graph G
is called antimagic if and only if it has an antimagic labeling. The main
Illustration in the theory of antimagic graphs is the determination of all
antimagic graphs. This Illustration still remains open. Ringel [11]
conjectured that every connected graph G of order 2 3 is antimagic. In
1993, Bodendiek and Walther [4] introduced the concept of an (a,d)-
arithmetic antimagic labeling.

Definition 1.1 [4] Let G(V,E) be a graph of order 2 3, and a,deN. A
bijective mapping f: E — {1,2,...,IEl} with induced mapping g:: V> N
defined by g{v) = £, 1) f(e), where I(v) = {eeE / e is incident to v},
veV is called (a,d)-arithmetic antimagic labeling or (a,d)-antimagic
labeling if and only if g{V) forms an arithmetic progression with initial
value a and step width d. That is, g(V) = {a, a+d, a+2d, ..., a+(IVI-1)d}.
See Figures 1 and 2. Figure 1 is (3,1)-antimagic graph G and Figure 2
is (4,1)-antimagic labeling of graph Cs.

G is called (a, d)-arithmetic antimagic or (a, d)-antimagic if and
only if G admits an (a, d)-antimagic labeling. Clearly every (a,d)-
antimagic graph is antimagic. The graph G given in Figure 1 is (3,1)-
antimagic. The converse need not be true. For example, C, is antimagic
as shown in Figure 3. But C, do not admit (a,d)-antimagic labeling for
any pair a,de N.
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Fig. 1. Fig. 2. Fig. 3.
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The weight w; (v) (sometimes denoted as w(v)) of a vertex v in
V(G) under an edge labeling f is the sum of values f(e) assigned to all
edges e incident to v. Let W denote the set of all vertex weights of the
graph G.

Bodendiek and Walther [5,6] proved the finiteness of two very
interesting subsets of set of all (a,d)-antimagic parachutes. Baca and
Hollander [2] characterized all (a,d)-antimagic graphs of prisms D, =
C. x P, when n is even. They showed that when n is odd, the prism D,
are ((5n+5)/2,2)-antimagic. They also conjectured that prisms with odd
cycles of length n, (n 2 7), are ((n+7)/2,4)-antimagic. Bodendiek and
Walther [7] proved that the following graphs are not (a, d)-antimagic;
even cycles; paths of even order, stars; C;® ; C,®; for n > 2 trees Tap,
that have a vertex that is adjacent to three or more pendant vertices; n-
ary trees with at least two layers when d = 1; Kj 5; the Petersen graph;
and K,. They also proved that Py, is (k, 1)-antimagic; Cy,; is (k+2,1)-
antimagic; if a tree of odd order 2k+1 (k > 1) is (a,d)-antimagic, then d
=1 and a = k; if Ky (k 2 2) is (a,d)-antimagic, then d is odd and
d < 2k(4k-3)+1; if Ky, is (a, d)-antimagic, then d is even and d <
(2k+1)(4k-1)+1; and if Ky, (k 2 2) is (a,d)-antimagic, then d <
(2k+1)(k-1). Nicholas, Somasundaram and Vilfred [10] gave condition
for special types of caterpillars, spiders and complete bipartite graph
Kna to be (a,d)-antimagic and categorized (a,d)-antimagic labeling of
unicyclic graphs and complete bipartite graphs.

Bodendiek and Walther [7] noted the following relation of
(a,d)-antimagic graph.
Lemma 1.2 [7] Let G(V, E) be an (a, d)-antimagic graph with p 2 3
and q 2 2. Then a and d satisfy the following conditions:
(a) a,deN are positive solutions of the linear Diophantine equation
(2a+(p-1)d)p = 2q(g+1) and
(b) a=38(8+1)/2 where 8 denotes the minimum degree of G. [ |

Definition 1.3 A partition of a non-negative integer n is a finite set
of non-negative integers d,,d,,...,dywhose sum is n.
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Partition seems to be very simple but plays an important role in
Combinatorics, Lie Theory, Representation Theory, Mathematical
Physics and Theory of Special Functions. Euler, Ramanujan,
Rademacher and Erdos revealed the beauty and uses of partition [12].
In [13], using partition, Vilfred proved that graph P, x Cs, the Cartesian
Product of graphs P, and C; is (10,2)-antimagic and obtained all its 56
different possible (10,2)-antimagic labeling. In this paper, using
partition, we prove that (i) the 1-sided infinite path P, is (1,2)-antimagic
(ii) path Py, is (n,1)-antimagic and (iii) (n+2,1)-antimagic labeling is
the unique (a,d)-antimagic labeling of 2-regular graph of order 2n+1
and graphs K;+(K, U K3), P2, and 2-regular graph of even order are not
(a,d)-antimagic. For any (a,d)-antimagic graph G, we derive a new
relation, a+(p-1)d < A(2g-A+1)/2, a,deN. Using the results of (a,d)-
antimagic labeling of C,, and C;,.,, we obtain the following.

1. For n 2 2, sequence formed by taking sum of two distinct numbers
out of 1,2,..,.2n as an element will not admit (a,d)-arithmetic
sequence of length 2n for any a,de N.

2. For n 2 1, (n+2,1)-arithmetic sequence is the unique (a,d)-arithmetic
sequence of length 2n+1 formed by taking sum of two distinct
numbers out of 1,2,...,2n+1 as an element, a,de N.

For further readings on antimagic and (a,d)-antimagic labeling
problems refer [1-8,10,11,13]. Motivation for this study is to use
partition, a very simple technique, in the study of (a,d)-antimagic labeling
of graphs. All graphs considered are simple graphs. For all basic ideas in
graph theory, we follow [9].

2. Main Results

The Diophantine equations in Lemma 1.2 are a necessary condition for
the existence of (a,d)-antimagic graphs and we give one more relation
in the following lemma.

Lemma 2.1 Let G be an (a,d)-antimagic graph and p 2 3, q 2 2, a,deN.
Then, a and d satisfy the following conditions.
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(a) a,de N are positive solutions of the linear Diophantine equation
(2a+(p-1)d)p = 2q(q+1) and
(b) 3(8+1)/2 < a and L < A(2g-A+1)/2 where L = a+(p-1)d is the last
term of the (a,d)-arithmetic antimagic series. That is the (a,d)-
arithmetic antimagic series lies between 8(8+1)/2 and A(2q-A+1)/2.

Proof

(a) We have, zveV gdv) = 2(2‘é cE f(e)). This implies,
a+(a+d)+ ... +(a+(p-1)d) = 2(1+2+ ... +q) which implies,
p(2a+(p-1)d)/2 = 2q(q+1)/2. Hence the Theorem (a).

b) Since & is the minimum degree of the graph G, at each vertex at least
O number of edges incident and hence the possible minimum value
of the edges incident at a vertex is 2 142+...+8. This implies, for
every vertex ve V(G), g(v) =Z,¢ 1(v) f(e) 2 142+...+8 = 8(d +1)/2.
Thus, a 2 §(3+1)/2.

Similarly, the maximum possible induced vertex label is the sum of

A distinct label of edges with possible maximum values. Thus, the

possible maximum value of A edges is q+(g-1)+(q-2)+...4+(q-A+1) =

A(2q-A+1)/2. Since the maximum vertex value of the (a,d)-antimagic

labeling of G is L = a+(p-1)d and so L = a+(p-1)d < A(2q - A+l)/2

Hence the result.

Corollary 2.2 Let G(V,E) be a k-regular (a,d)-antimagic graph with

p23,q22,a,d,keN. Then, a,d and k satisfy the following conditions.

(a) a,de N are positive solutions of the linear Diophantine equation

2a+(p-1)d = k(kp+2)/2 and

(b) k(k+1)/2 < a and L < k(kp-k+1)/2 where L = a+(p-1)d is the last
term of the (a,d)-arithmetic antimagic series. That is the (a,d)-
arithmetic antimagic series lies between k(k+1)/2 and k(kp-k+1)/2.®

Theorem 2.3 Let G be a 2-regular graph of order p. If G is (a,d)-

antimagic, then p is odd and a = (p+3)/2,d =1, a,deN.

Proof If possible, let G be a 2-regular (a,d)-antimagic graph of order 2n

for some a,d,neN. Then, equation (a) of Corollary 2.2 becomes
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2a+(2n-1)d = 4n+2 which implies, d must be even. From equation (b)
of Corollary 2.2, we get, 3 < a and L = a+(p-1)d = a+(2n-1)d < 4n-1.
But (3,2)-antimagic sequence of length p = 2n is 3,5,7,...,3+2(2n-1) =
4n+1 > 4n-1 and hence G is not a (3,2)-antimagic graph. In the above
sequence, a and d take their minimum possible values and even in this
case G is not (a,d)-antimagic for any a and d, a,de N. Hence, 2-regular
(a,d)-antimagic graph of even order doesn’t exist.

Now, let G be a 2-regular (a,d)-antimagic graph of order 2n+1,
n,a,de N. Using equation (a) of Corollary 2.2, we get, 2a+2nd =
2(2n+1)+2 which implies, a = (2-d)n+2, a,de N. This implies, d = 1 or
2. When d = 2, a = 2 which is not possible since a > 3. When d=1, a =
n+2 = (p+3)/2, pe 2N+1. Also, 2-regular ((p+3)/2,1)-antimagic graph
of order p exists, see Illustration 2.13, pe 2N+1. Hence the result. =
Note 2.4 It is easy to prove that the graphs C; U C,; and 3.C; are not
(a,d)-antimagic graphs even though each is a 2-regular odd order graph.
It is not known whether disconnected 2-regular (a,d)-antimagic graph
of odd order exists or not.

Theorem 2.5 Let G be a 3-regular graph of order p. If G is (a,d)-
antimagic, then p is even and (i) a= (7p+8)/4 and d = 1, pe4N or (ii) a
= 5(p+2)/4 and d = 2, pe4N+2 or (iii) a = (3p+12)/4 and d = 3, pe4N
oriv) a=(p+14)/4 and d =4, pe4N+2.

Proof Let G be a 3-regular (a,d)-antimagic graph of order p. Then, -
equations (b) and (a) of Corollary 2.2 become, L=a+(p-1)d < 3(3p-2)/2;
6 < a and 2a+(p-1)d = 3(3p+2)/2 which implies, p must be even.

Let p = 2n, neN. In this case, 6 < a and L < 3(3n-1). Equation (a)
of Corollary 2.2 becomes, 2a+(2n-1)d = 9n+3 which implies, 2a =
9n+3-(2n-1)d = (9-2d)n+3+d, a,n,de N. The possible values of d are 1,
2,3,4. Whend =1, a=(7n+4)/2 and L =a+(2n-1)d = (11n+2)/2 < 9n-3
= k(kp-k+1)/2, ne 2N. When d = 2, a = 5(n+1)/2 and L = (13n+1)/2 <
9n-3, 3 £ ne2N+1. Whend =3, a= (3n+6)/2 and L = 15n/2 < 9n -3,
ne2N. Whend =4,a = (n+7)/2 and L = (17n-1)/2 < 9n-3, 5 < n,
ne2N+1. Hence the result. [ |
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Note 2.6 3-regular graph K, is not (a,d)-antimagic [8]. Graphs K; ; and
P, x C; are 3-regular graphs. Graph Kj is not (a,d)-antimagic whereas
P, x C; is (10,2)-antimagic graph. Thus, the condition given in
Theorem 2.5 need not be sufficient for the existence of (a,d)-antimagic
3-regular graph of even order.
Theorem 2.7 [Relation between (a,d)-antimagic and degree sequences]
Let G be a (p,q) graph with degree sequence d,,d,,...,d,. Then, G is an
(a,d)-antimagic if and only if there exists a set of p numbers,
{a,a+d,...,a+(p-1)d}, formed by taking sum of exactly d; number of
numbers at a time out of 1,2,...,q,1=1,2,...,p.
Proof Let G be an (a,d)-antimagic graph with degree sequence
dy,dy,....dp. Then, the induced vertex labels of G are a,a+d,a+2d,
...,a+(p-1)d where 1,2,...,q are the edge labels of G. In G, each edge
label is added exactly to its end vertices while considering the vertex
labels of the graph and hence {a,a+d,..,a+(p-1)d} is the set of p
numbers formed by taking sum of d; number of numbers at a time out
of 1,2,..,q,i = 1,2,...,p.

The converse part is obvious from the definition of (a,d)-antimagic
graph. |

The followings illustrate the application of Theorems 2.1 and 2.7.
Illustration 2.8 Show that the graph G = K;+(K, U K;) is not (a,d)-
antimagic, using partition technique, a,de N.
Solution Consider the graph G = K;+(K; U K;). See Figure 4. Let
1,2,3,4 be the labels of the four edges e,,e,,e3,e4 of G. Using Theorem
2.1, possible (a,d)-antimagic sequences, if exist, are subsequences, each
of length 4 of 1,2,...,.9 = 4+3+2.

N D

4
Fig.4. G = Ki+(K1UKy) Fig.5
Thus, the possible (a,d)-antimagic sequences are
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(a) 1,234 whena=1,d=1; (b) 2,345 whena=2,d=1; ..;

(f) 6,7,89 whena=6,d=1; (g) 1,3,5,7 whena=1,d = 2; (h) 2,4,6,8
whena=2,d=2and (i) 3,5,7,9 whena=3,d=2.

Consider, each of the above (a,d)-antimagic sequences and their
corresponding possible vertex labels. On each sequence, partitioning of
vertex labels is done by one vertex label with three distinct parts, two
vertex labels each of two distinct parts and one vertex label without
partition, corresponding to the degree sequence of the graph 3,2,2,1.

Now, the label of the vertex with degree 3 should be 2 1+2+3 =6
and so the sequences (a) and (b) are not possible. Also, one vertex label
is without partition, corresponds to the pendant vertex and so its label
should be < 4. Hence cases (e) and (f) are not possible. In all other
cases, we consider all possible schemes of partition one by one.

(c) In this case, the only possible scheme of partition is 6 = 1+2+3;
5=1+4;4;3=2+1.

(d) In this case, consider the following two scheme of partition:

(1) 7 =4+2+1;6 =4+42;5 = 1+4 or 2+3; 4 and
(ii) 7=4+3; 6 = 14243; 5=4+1; 4.
(g) In this case, consider the following two scheme of partition:
(1)7=1+2+4;5=2+3;3=1+2; 1 and
(i) 7=142+4;5=1+4;3 = 142; 1.

(h) In this case, the scheme of partition is 8 = 4+3+1; 6 = 244, 4 = 1+3;
2 which is a (2,2)-antimagic labeling and the corresponding graph is
given in Figure 5.

(i) In this case, the scheme of partition is 9=4+3+2; 7=4+3; 5 = 2+3; 3.

Thus, in all these cases the vertex labels 1,2,3 and 4 are not
occurring twice exactly, except case (h) which is also not possible for
K,+(K; v Kj). Hence, (a,d)-arithmetic antimagic labeling does not
exist for the graph K;+(X, U K;), a,deN.

Hence, the graph K;+( K; U K;) is not (a,d)-antimagic, adeN. =
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Iustration 2.9 Show that C, is not (a,d)-antimagic, using partition
technique.

Solution Let 1,2,3,4 be the edge labels of the four edges e, e, €3, &4 of
C4. The possible induced vertex labels are 3 (= 142 = minimum
possible value), 4,5,6,7 (= 3+4 = maximum possible value). Therefore,
3,4,5,6 and 4,5,6,7 are the only possible (a,d)-antimagic sub-sequences,
each of length 4, of the sequence 3,4,5,6,7. Now, consider the two cases
separately. Since each vertex of C, is of degree two, in the partitioning
of vertex labels each vertex label should be partitioned in to two
different elements and the partitioned numbers (elements) should be
from 1,2,3,4.

In the first case, the possible bipartition of the vertex labels are 6 =
2+4; 5 = 1+4 (= 243 is not possible for C, since 4 cannot occur as
partitioned element in the other vertex labels); 4 = 143; 3 = 1+2. This is
not possible since 3 occurs only once and 1 occurs three times. Hence,
this case is not possible.

In the second case, the possible bipartition of the vertex labels are
7 = 344, 6 = 2+4. Here, 4 occurs twice and so its chance of occurrence
is over and hence 5 = 243, 4 = 143. Thus, 3 occurs 3 times. Hence, this
case is also not possible.

Hence, the graph C, is not (a,d)-antimagic for any a,de N. |

Dlustration 2.10 Show that the 1-sided infinite path P, is
(1,2)-antimagic labeling, using partition technique.
Solution The starting and end vertices of the 1-sided infinite path P, is
of degree one and all other vertices are of degree 2. If P, is
(1,2)-antimagic labeling, then the vertex labels of P, are 1,3,5,7,....
Since 1 is a vertex label in P, implies, it is the label of a pendent vertex
of P;. Let the starting edge label be 1.
A partition scheme of the vertex labels is 1 = a, 3 = 1+2, 5 = 2+3,
7 = 344, 9 = 445 and so on. The last number of the (a,d)-antimagic is
a+(IV(G)I-1)d = 142(IV(G)I-1) = 2. |V(G) [-1. Thus, the 1-sided infinite
path P, is (1,2)-antimagic. See Figure 6. [ |
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o— o2 o> ot o 3 o
1 3 5 7 9 11

Fig. 6. (1,2)-antimagic labeling of 1-sided infinite path P;.

Ilustration 2.11 Show that every path P, is exactly (n,1)-antimagic,
using partition technique, n 2 1.
Solution For n 2 1, assume that P,,,; be (a,d)-antimagic, a,de N. Here,
p = 2n+l and q = 2n. The Diophantine equation (a) becomes,
2a(2n+1)+(2n+1)-2nd = 4n(2n+1). This implies, a= n(2-d), a,d,neN.
This equation has the unique solution, d = 1 and a = n. Thus, (n,1)-
antimagic is the only possible (a,d)-antimagic labeling of Py, n 2 1.
The maximum value among the vertex label is a+(p-1)d = 3n. And so
the sequence of induced vertex labels is n,n+1,...,3n-1,3n and the edge
labels are 1,2,...,2n.

Consider the following bipartition scheme of the edge labels: n =
0+n; n+1 = 0+(n+1); n+2 = 1+(n+1); n+3 = 1+(n+2); n+4 =2+(n+2); ...;
3n-3 = (n-2)+(2n-1); 3n-2 = (n-1)+(2n-1); (3n-1) = (n-1)+2n; 3n =

n+2n. (n,1)-antimagic labeling of P,,,, is given in Figure 7. n
3p4 n 2
2 ... +2 /1 +1
n 3n-1 In-3 3n-5 n+5 n+3 n+l

Fig. 7. (n,1)-antimagic labeling of Ppp).

Ilustration 2.12 Show that for n 2 1, path P, is not (a,d)-antimagic,
a,deN.

Solution If possible, assume that for n > 1, path P,, be an (a,d)-
antimagic, for some a,deN. Then, the Diophantine equation (a)
becomes, 2a(2n)+2n(2n-1)d = 4n(2n-1). This implies, 2a = (2n-1)(2-d).
Hence, d = 1 is the only possible value of d and the corresponding
value of a is (2n-1)/2, which is not a natural number.

Hence, the path Py, is not an (a,d)-antimagic for a,d,ne N. [ ]
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Ilustration 2,13 Show that for n > 1, (n+2,1)-antimagic labeling is the
unique (a,d)-antimagic labeling of Cy,,, using partition technique.
Solution Assume for n 2 1, Cyy be an (a,d)-antimagic for some
a,de N. Applying the Diophantine equation (a) on Cy,,;, we get, 2a+2nd
= 2(2(2n+1)+2)/2. This implies, a = n(2-d)+2, a,d,ne N. This equation
has two solutions for d, namely, d =2 and d = 1 and the corresponding
values of a are a =n-2 and a = n+2, respectively. Thus, the following
two cases arise.

Casela=2andd=2.

In this case, the vertex labels are 2,4,6,...,2(2n+1). This is not
possible since 2 = 1+1 is the only bipartition of 2, which is not possible
in C,,,;. Hence, this case is not possible.

Case2a=n+2andd=1.

The possible induced vertex labels are n+2, n+3, .
(n+1)+(2n+1) = 3n+2 and by considering a bipartition of each of them
we have the following two sub cases.

Case 2.1 nis odd.

When n is odd, consider C,,,; with the following partition scheme
of the numbers (vertex labels of Cy,.1):

a=n+2 = (n+1)+1; n+3 = 1+(n+2); n+4 = (n+2)+2; .

2n+1 = 3n+1)2+(n+1)/2; 2n+2 = (n+1)/2+3(n+1)/2; . . . ;

3n = 2n+n; 3n+1 = n+(2n+1); 3n+2 = (2n+1)+(n+1). Figures 8, 9
and 10 are the (3,1), (5,1) and (n+2,1)-antimagic labeling of graphs C;,
C, and Cy,,; when n is odd, respectively.

Case 2.2 nis even.

Consider C;,,; when n is even.

The partition scheme of the numbers (vertex labels of Cy,,,) is

a=n+2 = 1+(n + 1); n+3 = 1+(n+2); n+4 = 2+(n+2); . . . ;

2n+1 = n/2+(3n+2)/2; 2n+2 = (3n+2)2+(n+2)/2; . . . ;

3n = 2n+n; 3n+1 = n+(2n+1); 3n+2 = 2n+1)+(n+1).
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Fig. 8. Cs. 5 1
Fig. 9. Cy.

-2 n-1 ad 2n & :

n

n+3 n+2

.

Fig. 10. Cyp41, N is odd.

Figures 11, 12 and 13 show that the above partition scheme is a
possible (a,d)-antimagic labeling in this case. [ |

8 9 0 1
2.743
7
5

6

— n+3 2 n+2 1
® n!S n!4 n’ﬁ a=n+2

Fig. 13. C2p41, nis even.

BT I S—

4 8 12 4n-8 4n-4
Fig. 14. Antimagic labeling of Cap.
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For n 2 2, Cp, is antimagic, see Figure 14, but it is not
(a,d)-antimagic, see Illustration 2.14, a,de N.

Illustration 2.14 Show that for n > 2, the graph C,, is not
(a,d)-antimagic, a,de N.
Solution If possible, let C,, be an (a,d)-antimagic for some a,de N and n
2 2. Applying the Diophantine equation (a) on C,,,, we get,
2a+(2n-1)d=2(2n+1) ---(1)
Also, a 2 142 = 3 and a+(p-1)d = a+(2n-1)d < 2g-1 = 4n-1 which
implies, 2a+2(2n-1)d < 8n-2. This implies, 4n+2+(2n-1)d < 8n-2, using
equation (1). This implies, (2n-1)d < 4(n-1), n 2 2, d,ne N. The only
possible solution of this relation is d = 1 and the corresponding value of
a is obtained from equation (a) as 2a = 2n+3 which implies, a =
(2n+3)/2 which is not a natural number. Hence, C,, is not
(a,d)-antimagic for any a,d,ne Nand n > 2. [ ]
Note 2.15 It is noted that the proof given in Results 2.13 and 2.14 are
true in the case of 2-regular graphs of order 2n+1 and 2n, respectively,
ne N. Thus, in general, we get the following results.
Ilustration 2.16 Show that for n 2 1, (n+2,1)-antimagic labeling is the
unique (a,d)-antimagic labeling of 2-regular graph of order 2n+1. That
is (n+2,1)-antimagic labeling is the unique (a,d)-antimagic labeling, if
exists, of disjoint union of cycles whose total number of vertices is
2n+1, a,d,neN. [ |
Ilustration 2.17 Show that for n > 2, 2-regular graph of order 2n is not
(a,d)-antimagic, a,d,ne N. That is disjoint union of cycles whose order
is 2n is not (a,d)-antimagic, a,d,neNand n 2 2. n

3. Combinatorial Interpretation of results on Cycles

It is clear that any (a,d)-antimagic graph is antimagic but the converse
need not be true. Also, for n 2 2, 2-regular graph of order 2n is not
(a,d)-antimagic, a,de N whereas for n 2 1, (n+2,1)-antimagic labeling is
the unique (a,d)-antimagic labeling, if exists, of 2-regular graph of
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order 2n+1. The above results have interesting combinatorial
interpretation.

Definition 3.1 For a,de N, the sequence a, a+d, a+2d,...,, a+(n-1)d is
called an (a,d)-arithmetic sequence of length n.

Theorem 3.2 For n 2 2, the sequence formed by taking sum of two
distinct numbers out of 1,2,...,2n as an element will not admit any (a,d)-
arithmetic sequence of length 2n, a,de N.

Proof It is enough to prove that for n > 2, 2-regular graph of order 2n is
not (a,d)-antimagic, a,d,ne N. The Theorem follows from Illustration
2.17. [ |
Theorem 3.3 For n 2 1, (n+2,1)-arithmetic sequence is the unique
(a,d)-arithmetic sequence of length 2n+1 formed by taking sum of two
distinct numbers out of 1,2,...,2n+1 as an element, a,de V.

Proof It is enough to prove that for n 2 1, (n+2,1)-antimagic labeling is
the unique (a,d)-antimagic labeling of 2-regular graph of order 2n+1.
The Theorem follows from Problems 2.16 and 2.13. Labeling given in
the solution of Illustration 2.13 establishes the existence of such

labeling. ]
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