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Abstract
The parameter ¢ of a tree 7-spanner of a graph is always bounded by 24 where
A is the diameter of the graph. In this paper we establish a sufficient condition
for graphs to have the minimum spanner at least 2 p — 1 where p is the radius.
We also obtain a characterization for tree 3-spanner admissible chordal graphs

in terms of tree 3-spanner admissibility of certain subgraphs.
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1. Introduction

An interconnection network consists of a set of processors, each with a local
memory, and a set of bidirectional links that serve for the exchange of data
between processors. A convenient representation of an interconnection network
is by an undirected (in some cases directed) graph G = (V, E) where each
processor is a vertex in V and two vertices are connected by an edge if and only
if there is a communication link (bidirectional for undirected and unidirectional
for directed graphs) between processors[13]. We will use the term
interconnection network and graph interchangeably.

Design of interconnection networks is an integral part of parallel
processing or distributed systems. There are a large number of topological
choices for interconnection networks. If a network has an expensive topology, a
sparse less expensive spanner can be substituted, while retaining a similar
network structure with a slight increase in communication costs.

Given a simple connected graph G, a spanning subgraph H of G is a ¢-
spanner of G if for every u, v € V(G), the distance between u and v in H is at
most ¢ times their distance in G. Peleg and Schaffer [12] proved that a spanning
subgraph H of G is a t-spanner of G if and only if for edge (x, y) € E(G), the
distance between x and y in H is at most ¢. A ¢-spanner is minimum if it contains
a minimum number of edges among all ¢-spanners of G. The minimum #-spanner
problem is to find a s-spanner with the minimum number of edges for a given
graph and a given ¢ [5]. A tree t-spanner T in a graph G is a spanning tree of G
such that the distance between every pair of vertices in T is at most  times their
distance in G. See Figure 1. A graph G is tree ¢-spanner admissible if it contains
a tree t-spanner. The tree z-spanner admissible problem is to determine the
existence of a tree ¢-spanner in a given graph [3, 4]. The minimum tree spanner
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problem is to find a tree ¢-spanner with the minimum ¢ for a given graph [3, 8,
9].

@ ® ©
Figure 1: (a). A graph G. (b). A 4-spanner. (c). A tree 4-spanner

Let G be a graph and v be a vertex of G. The eccentricity of the vertex v
is the maximum distance from v to any vertex. That is, e(v) = max{d(v, w): w in
(@)}

The minimum eccentricity among the vertices of G is termed as radius
p and the maximum eccentricity among the vertices of G the diameter 4. In

other words

p (G) =min{e(v): vin V(G)}

A (G) = max{e(v): vin (G)}.

Let G be a graph with diameter 4. A vertex v of G is said to be
diametrically opposite to a vertex u of G, if de(u, v) = 4. A graph G is said to
be diametrically uniform if every vertex of G has at least one diametrically
opposite vertex. The set of diametrically opposite vertices of a vertex x in G is
denoted by D(x).

Figure 2: A diametrically uniform graph with diameter 2

In this paper, we deviate from the notion of spanners defined in the
literature. The term spanner in the literature is a spanning subgraph whereas our

concept of spanner is a number.
A spanner ¢ (7, G) of a spanning tree T of G is defined as ¢ (7, G) =

max{dxu, v): (4, v) is an edge of G}. The minimum spanner ¢(G) of G is
defined as ¢ (G) = min{ ¢ (7, G): T is a spanning tree of G}. A spanning tree T
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is called a minimum tree spanner, if ¢ (7, G) = ¢(G). Equivalently T is a
minimum tree spanner if ¢(7, G < ¢(T’, G), for all spanning trees T "of G

[11).
In this paper, we establish a sufficient condition for graphs to have the
minimum spanner at least 2 p — 1 where p is the radius.

2. Graphs with minimum spanner at least 2 p -1

Let G be a graph and let ¥ € V(G). Let R(w) = {v € V: d(u, v) = p } where p is
the radius of G. We establish a sufficient condition for graphs to have minimum
spanner at least2 p -1,

Theorem 1: Let G = (V, E) be a graph. If for every edge (x, y) in E and for every
vertex x* of R(x), there exists a vertex y* of R(y) such that (x*, y*) is an edge of

G,then ¢(G) 2 2p -1.

Proof. Assume the contrary. Let there be a spanning tree T such that
di{{x,y) <2 p -1, for every edge (x, y) in E. 03]

Without loss of generality, let T be a rooted tree. Given a vertex @ and a

member « * of R(a) such that & * is a descendant of & in T, we claim that

the vertex @ has a child S such that the subtree rooted at § contains & * as

well as a member S * of R( S ). See Figure 3.
o

a*

B*
Figure 3: Subtree rooted at § contains ¢* and § *

Let B be a child of @ such that the subtree rooted at § contains a*. This is
possible since p 2 1. Since («, 8) € E, by hypothesis of the theorem, there
exists a vertex B * of R(fS) such that (@ *, 8*) € E. Now it is enough to
prove that « * and £ * are in the same subtree rooted at S . Suppose that our
claim is false.
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Figure 4: o* and £ * are in the different subtrees rooted at 5

Then a* and S * lie in two different components of T —a and hence
d{a*,f*) 2 2p - 1. See Figure 4. This is a contradiction to condition (1)
since (@ *, B *) € E. This proves our claim.

We start at the root of T and traverse T in a DFS order. Let ¥ denote

the root of T. Once a vertex x of T is visited, a child y of x is identified and
visited inductively. Now let us start from the root ¥ of T. Let 7* € R(7).

Given 7 and a member ¥ * of R(y) in the subtree rooted aty, we can
find a child & of ¥ such that the subtree rooted at J contains y* as well as a
member & * of R(J ). Fromy, it traverses to & . The DFS traversal starting at
¥ visits &, a child of 7.

Inductively let x be the last visited vertex and x* be a member of R(x)
which is a descendant of x. As we have shown above, there exists a child y of x

such that the subtree rooted at y contains x* as well as a member y* of R(y).
Hence the DFS traversal never reaches a leaf and does not terminate which is

not possible in a finite tree. Thus ¢ (G) 2 20 - 1.

Remark 1: When the radius equals the diameter the graph reduces to a
diametrically uniform graph and thus we have the following result.

Corollary 1 [11]: Let G be a diametrically uniform graph with diameter 4 > 1.
Given an edge (x, y) in E(G), if for every vertex x* of D(x) there exists a vertex
y* of D(y) such that (x* y*) is an edge of G, then {{G) 2 24~1, where D(x) is
the set of vertices diametrically opposite to x.

3. Minimum Spanner of Odd Petersen Graphs

A generalized Petersen graph P(n, m), n 2 3,1 < m < ["T-IJ , consists of an

outer n — cycle wuu;...u,, a set of n spokes (4, v)), 1 < i < nand n inner edges
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(i, Vis) Wwith indices taken modulo n. For convenience, u;, 4y, ..., u, are
represented by 1, 2, ..., nand vy, vy, ..., vy by n + 1, n + 2, ..., 2n respectively.
In this paper, we consider Petersen graphs with m = 2 and call a generalized
Petersen graph P(n, 2) simply a Petersen graph.

The diameter of Petersen graph P(n, 2) is givenby A= [QL‘-‘_-QJ+ 4,n28.

Figure 5: A Petersen graph P(11,2)

Proposition 1 [11): The Petersen graph P(2n, 2) is diametrically uniform.

Proposition 2 [11]: The Petersen graph P(2n + 1, 2), n 2 4, is not diametrically
uniform and the radius is givenby p= [—Q—;ﬁ—l +3.

Propeosition 3: Let G be P(2n + 1, 2), n 2 4. Then, for every edge (x, y) in E and
for every vertex x* of R(x), there exists a vertex y* of R(y) such that (x*, y*) is
an edge of G.

Theorem 2: Let Gbe P(4n+3,2),n 2 2. §(G)=2p - 1.

Proof. Theorem 1 and Proposition 3 yield ¢ (P(4n+3,2)) 22p —1. The
Breadth-First Search Algorithm to draw the BFS tree rooted at an inner cycle
vertex of P(4n + 3, 2), results in a spanning tree with & (P(@4n+3,2))=2p —1.

Open Problem: Let Gbe P(4n+1,2),n 2 2. §(G)=2p.
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Figure 6: An example to illustrate Theorem 2

4. Conclusion

We have established a sufficient condition for graphs to have minimum spanner
at least 2 p — 1. The minimum spanner of odd Petersen graph has been derived.

A future direction of research is to identify more classes of graphs with
minimum spanner 2 0 - 1.
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