Graphs with Minimum Spanner $\zeta(G) \geq 2\rho - 1$

Albert William¹, Antony Kishore¹, Paul Manuel²

¹Department of Mathematics, Loyola College, Chennai, India

²Department of Information Science, Kuwait University, Kuwait kishorepantony@gmail.com

Abstract

The parameter t of a tree t-spanner of a graph is always bounded by 2λ where λ is the diameter of the graph. In this paper we establish a sufficient condition for graphs to have the minimum spanner at least $2\rho - 1$ where ρ is the radius. We also obtain a characterization for tree 3-spanner admissible chordal graphs in terms of tree 3-spanner admissibility of certain subgraphs.

Keywords: spanning subgraph, tree *t*-spanner, Petersen graph, chordal graph, split graph.

1. Introduction

An interconnection network consists of a set of processors, each with a local memory, and a set of bidirectional links that serve for the exchange of data between processors. A convenient representation of an interconnection network is by an undirected (in some cases directed) graph G = (V, E) where each processor is a vertex in V and two vertices are connected by an edge if and only if there is a communication link (bidirectional for undirected and unidirectional for directed graphs) between processors[13]. We will use the term interconnection network and graph interchangeably.

Design of interconnection networks is an integral part of parallel processing or distributed systems. There are a large number of topological choices for interconnection networks. If a network has an expensive topology, a sparse less expensive spanner can be substituted, while retaining a similar network structure with a slight increase in communication costs.

Given a simple connected graph G, a spanning subgraph H of G is a t-spanner of G if for every $u, v \in V(G)$, the distance between u and v in H is at most t times their distance in G. Peleg and Schaffer [12] proved that a spanning subgraph H of G is a t-spanner of G if and only if for edge $(x, y) \in E(G)$, the distance between x and y in H is at most t. A t-spanner is minimum if it contains a minimum number of edges among all t-spanners of G. The minimum t-spanner problem is to find a t-spanner with the minimum number of edges for a given graph and a given t [5]. A tree t-spanner T in a graph G is a spanning tree of G such that the distance between every pair of vertices in T is at most t times their distance in G. See Figure 1. A graph G is tree t-spanner admissible if it contains a tree t-spanner. The tree t-spanner admissible problem is to determine the existence of a tree t-spanner in a given graph [3, 4]. The minimum tree spanner

problem is to find a tree t-spanner with the minimum t for a given graph [3, 8, 9].

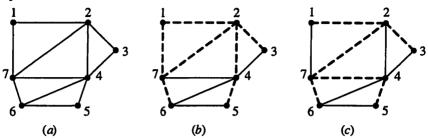


Figure 1: (a). A graph G. (b). A 4-spanner. (c). A tree 4-spanner

Let G be a graph and v be a vertex of G. The eccentricity of the vertex v is the maximum distance from v to any vertex. That is, $e(v) = \max\{d(v, w): w \text{ in } V(G)\}$.

The minimum eccentricity among the vertices of G is termed as radius ρ and the maximum eccentricity among the vertices of G the diameter λ . In other words

 $\rho(G) = \min\{e(v): v \text{ in } V(G)\}$ $\lambda(G) = \max\{e(v): v \text{ in } V(G)\}.$

Let G be a graph with diameter λ . A vertex ν of G is said to be diametrically opposite to a vertex u of G, if $d_G(u, \nu) = \lambda$. A graph G is said to be diametrically uniform if every vertex of G has at least one diametrically opposite vertex. The set of diametrically opposite vertices of a vertex x in G is denoted by D(x).

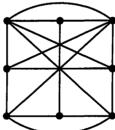


Figure 2: A diametrically uniform graph with diameter 2

In this paper, we deviate from the notion of spanners defined in the literature. The term spanner in the literature is a spanning subgraph whereas our concept of spanner is a number.

A spanner $\zeta(T, G)$ of a spanning tree T of G is defined as $\zeta(T, G) = \max\{d_T(u, v): (u, v) \text{ is an edge of } G\}$. The minimum spanner $\zeta(G)$ of G is defined as $\zeta(G) = \min\{\zeta(T, G): T \text{ is a spanning tree of } G\}$. A spanning tree T

is called a minimum tree spanner, if $\varsigma(T, G) = \varsigma(G)$. Equivalently T is a minimum tree spanner if $\varsigma(T, G) \le \varsigma(T', G)$, for all spanning trees T of G [11].

In this paper, we establish a sufficient condition for graphs to have the minimum spanner at least $2 \rho - 1$ where ρ is the radius.

2. Graphs with minimum spanner at least $2\rho - 1$

Let G be a graph and let $u \in V(G)$. Let $R(u) = \{v \in V: d(u, v) = \rho\}$ where ρ is the radius of G. We establish a sufficient condition for graphs to have minimum spanner at least $2\rho - 1$.

Theorem 1: Let G = (V, E) be a graph. If for every edge (x, y) in E and for every vertex x^* of R(x), there exists a vertex y^* of R(y) such that (x^*, y^*) is an edge of G, then $G = (G) \ge 2 \rho - 1$.

Proof. Assume the contrary. Let there be a spanning tree T such that $d_T(x, y) < 2 \rho - 1$, for every edge (x, y) in E. (1)

Without loss of generality, let T be a rooted tree. Given a vertex α and a member α * of $R(\alpha)$ such that α * is a descendant of α in T, we claim that the vertex α has a child β such that the subtree rooted at β contains α * as well as a member β * of $R(\beta)$. See Figure 3.

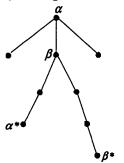


Figure 3: Subtree rooted at β contains α^* and β^*

Let β be a child of α such that the subtree rooted at β contains α^* . This is possible since $\rho \geq 1$. Since $(\alpha, \beta) \in E$, by hypothesis of the theorem, there exists a vertex β^* of $R(\beta)$ such that $(\alpha^*, \beta^*) \in E$. Now it is enough to prove that α^* and β^* are in the same subtree rooted at β . Suppose that our claim is false.

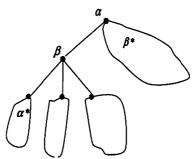


Figure 4: α^* and β^* are in the different subtrees rooted at β

Then α^* and β^* lie in two different components of $T - \alpha$ and hence $d_T(\alpha^*, \beta^*) \ge 2\rho - 1$. See Figure 4. This is a contradiction to condition (1) since $(\alpha^*, \beta^*) \in E$. This proves our claim.

We start at the root of T and traverse T in a DFS order. Let γ denote the root of T. Once a vertex x of T is visited, a child y of x is identified and visited inductively. Now let us start from the root γ of T. Let $\gamma^* \in R(\gamma)$.

Given γ and a member γ^* of $R(\gamma)$ in the subtree rooted at γ , we can find a child δ of γ such that the subtree rooted at δ contains γ^* as well as a member δ^* of $R(\delta)$. From γ , it traverses to δ . The DFS traversal starting at γ visits δ , a child of γ .

Inductively let x be the last visited vertex and x^* be a member of R(x) which is a descendant of x. As we have shown above, there exists a child y of x such that the subtree rooted at y contains x^* as well as a member y^* of R(y). Hence the DFS traversal never reaches a leaf and does not terminate which is not possible in a finite tree. Thus $\zeta(G) \ge 2\rho - 1$.

Remark 1: When the radius equals the diameter the graph reduces to a diametrically uniform graph and thus we have the following result.

Corollary 1 [11]: Let G be a diametrically uniform graph with diameter $\lambda > 1$. Given an edge (x, y) in E(G), if for every vertex x^* of D(x) there exists a vertex y^* of D(y) such that (x^*, y^*) is an edge of G, then $\zeta(G) \ge 2\lambda - 1$, where D(x) is the set of vertices diametrically opposite to x.

3. Minimum Spanner of Odd Petersen Graphs

A generalized Petersen graph P(n, m), $n \ge 3$, $1 \le m \le \lfloor \frac{n-1}{2} \rfloor$, consists of an outer n – cycle $u_1u_2...u_n$, a set of n spokes (u_i, v_i) , $1 \le i \le n$ and n inner edges

 (v_i, v_{i+m}) with indices taken modulo n. For convenience, $u_1, u_2, ..., u_n$ are represented by 1, 2, ..., n and $v_1, v_2, ..., v_n$ by n + 1, n + 2, ..., 2n respectively. In this paper, we consider Petersen graphs with m = 2 and call a generalized Petersen graph P(n, 2) simply a Petersen graph.

The diameter of Petersen graph P(n, 2) is given by $\lambda = \left| \frac{(n-6)}{4} \right| + 4$, $n \ge 8$.

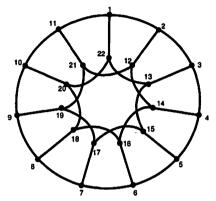


Figure 5: A Petersen graph P(11,2)

Proposition 1 [11]: The Petersen graph P(2n, 2) is diametrically uniform.

Proposition 2 [11]: The Petersen graph P(2n + 1, 2), $n \ge 4$, is not diametrically uniform and the radius is given by $\rho = \left\lfloor \frac{(n-3)}{2} \right\rfloor + 3$.

Proposition 3: Let G be P(2n + 1, 2), $n \ge 4$. Then, for every edge (x, y) in E and for every vertex x^* of R(x), there exists a vertex y^* of R(y) such that (x^*, y^*) is an edge of G.

Theorem 2: Let G be $P(4n + 3, 2), n \ge 2$. $\zeta(G) = 2 \rho - 1$.

Proof. Theorem 1 and Proposition 3 yield ζ (P(4n+3,2)) $\geq 2\rho - 1$. The Breadth-First Search Algorithm to draw the BFS tree rooted at an inner cycle vertex of P(4n+3,2), results in a spanning tree with ζ (P(4n+3,2))= $2\rho - 1$.

Open Problem: Let G be P(4n+1, 2), $n \ge 2$. $\zeta(G) = 2\rho$.



Figure 6: An example to illustrate Theorem 2

4. Conclusion

We have established a sufficient condition for graphs to have minimum spanner at least $2\rho - 1$. The minimum spanner of odd Petersen graph has been derived. A future direction of research is to identify more classes of graphs with minimum spanner $2\rho - 1$.

5. References

- [1] U. Brandes and D. Handke, NP-completeness results for minimum planar spanners, Proceedings of the 23th Workshop on Graph Theoretic Concepts in Computer Science 1335, 1997, pp. 85 99.
- [2] L. Cai, Tree Spanners: Spanning Trees that approximate distances, Technical Report 260/92, University of Toronto, 1992.
- [3] L. Cai and D.G. Corneil, Tree Spanners, SIAM J. Discrete Math., 8, 1995, pp. 359 387.
- [4] Cai L and Corneil D. G. Isomorphic tree spanner problems, Algorithmica, 14, 1995, pp. 138-153.
- [5] Cai L. NP-Completeness of Minimum Spanner Problems, Discrete Applied Mathematics, 48, 1994, pp. 187-194.
- [6] Cai L and Keil J.M. Spanners in Graphs of Bounded Degree, Networks, 24, 1994, pp. 233-249.
- [7] Cohen E. Fast algorithms for constructing t-spanners and paths with stretch t*, Siam J.Comput., 28, No1, 1998, pp. 210-236.
- [8] Foldes, Stephane; Hammer, Peter L. Split Graphs, Congressus Numerantium, No. XIX, (1977), 311 315.
- [9] Heydemann M. C., Peters J. G. and Sotteau D. Spanners of hypercube derived networks, Siam J Disc Math, 9, 1996, pp. 37-54.
- [10] Hwang S. C., Chen G. H. Minimum Spanners of Butterfly graphs, Networks, 37 (3), 2001, pp. 156-164.

- [11] Paul Manuel, Bharati Rajan, Indra Rajasingh snd Amutha A. Tree Spanners, Cayley Graphs and Diametrically Uniform Graphs, Lecture Notes in Computer Science, Springer Verlag, 2880, 2003, pp. 333-345.
 [12] Peleg D., and Schaffer A. A. Graph Spanners, J. Graph Theory, 13, 1989,
- pp. 99-116.
 [13] Xu J. Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, 2001.