Equi-Toughness Partitions of Graphs

R. Sundareswaran and V.Swaminathan Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai Email: sulanesri@yahoo.com

Abstract

Let G = (V, E) be a simple graph. Let S be a subset of V(G). The toughness value of S denoted by T_S is defined as $\frac{|S|}{\omega(G-S)}$, where $\omega(G-S)$ denotes the number of

components in G - S. If S = V, then $\omega(G-S)$ is taken to be 1 and hence $T_{V(G)}=|V(G)|$. A partition of V(G) into subsets $V_1, V_2, \ldots V_t$ such that $T_{V_i}, 1 \le i \le t$ is a constant is called an equi-toughness partition of G. The maximum cardinality of such a partition is called equitoughness partition number of G and is denoted by ET(G). The existence of ET-partition is guaranteed. In this paper, a study of this new parameter is initiated.

Keywords: Toughness, equi-toughness partition

1. Introduction

Let G = (V, E) be a simple graph. Then the toughness t(G) of G is the minimum of $\frac{|S|}{\omega(G - S)}$ taken over all sets S of

vertices such that $\omega(G - S) \ge 2$, where $\omega(G)$ denote

the number of components of G. A subset S of V(G) for which the minimum is achieved is called a tough set. The parameter toughness was introduced by Chv'atal [3]. Though much of the research has focused on the relationship between toughness and hamiltonicity, some general results were derived by Pippert and Goddard [5] and Swart [4].

In the case of toughness of a graph, subsets S of V with $\omega(G-S) \ge 2$ are alone considered. For any subset S of V we can associate a value $\frac{|S|}{\omega(G-S)}$. If $\omega(G-S)=1$, then this value will be |S|. We call this value as the toughness value of S and we denote this by T_S . If S=V, then $\omega(G-S)$ is taken to be 1 and hence $T_{V(G)}=|V(G)|$. A partition of V (G) into subsets V_1,V_2,\ldots,V_t such that T_{V_i} , $1 \le i \le t$ is a constant is called an equi-toughness partition of G. The maximum cardinality of such a partition is called equi-toughness partition number of G and is

2. Equi-toughness partition

is made in this paper.

Definition 2.1: Let G = (V, E) be a simple graph. Let S be a subset of V (G). The toughness value of S denoted by T_S is defined as $\frac{|S|}{\omega(G-S)}$, where $\omega(G-S)$ denotes the number

denoted by ET (G). A study of this equi-toughness partition

of components in G - S. If S = V, then $\omega(G - S)$ is taken to be 1.

Definition 2.2: Let G = (V, E) be a simple graph. A partition of V (G) into subsets V₁, V₂, ... V_t such that T_{v_i} , $1 \le i \le t$ is a constant is called an equi-toughness partition of G. The maximum cardinality of such a partition is called equi-toughness partition number of G and is denoted by ET (G). Since V (G) itself is an equi-toughness partition of G, the existence of an equi-toughness partition in any graph is guaranteed.

Observation 2.3: For any graph G, $1 \le ET(G) \le n$ and the bounds are attained as seen in Theorem 2.4 and Proposition 2.6 below.

Theorem 2.4: Let G be a nontrivial connected graph. Then ET(G) = n if and only if G has no cut vertex.

Proof.

Suppose G is a nontrivial connected graph without cut vertex. Then ET(G) = n.

Conversely, suppose ET (G) = n. Then T_u is constant for every vertex $u \in V(G)$. Since G is a nontrivial connected graph, G has at least two vertices which are not cut vertices. For such a vertex say u, $T_u = 1$. Hence $T_u = 1$ for all $u \in V$

(G). If G has cut vertex say v, then
$$T_v = \frac{1}{\omega(G-v)} < \frac{1}{2} < 1$$
,

a contradiction. Therefore, G has no cut vertices.

Proposition 2.5: ET $(K_n) = n$; ET $(K_{m,n}) = m + n$; ET $(W_n) = n$; ET $(C_n) = n$.

Proposition 2.6:

$$ET(K_{1,n}) = \begin{cases} \frac{n+3}{2}, & \text{if n is odd} \\ 1, & \text{otherwise} \end{cases}$$

Proof.

Case (i): Let n + 1 be odd. Let $n = 2\ell$.

Suppose ET $(K_{1,n}) > 1$. Let $\{V_1, V_2, ..., V_s\}$ be a maximum equi-toughness partition of $K_{1,n}$. Without loss of generality, let the center of the star belong to V_1 . Let $|V_1| = k$ and

$$T_{V_1} = t$$
. Therefore, $\frac{k}{n+1-k} = t$, (since k < n +1, left hand

side is finite). Therefore, $k = \frac{(n+1)t}{t+1}$ and hence

$$k-1=\frac{(n-1)}{t+1}.$$

Since $T_{V_2} = T_{V_3} = ... = T_{V_s} = t$, $|V_2| = |V_3| = ... = |V_s| = t$.

Thus,
$$|V_2| + |V_3| + ... + |V_s| = 2\ell - (k-1) = 2\ell - \frac{(n-1)}{t+1}$$
.

Therefore,
$$2 \ell - \frac{(n-1)}{t+1} = t (s-1), s \ge 2.$$

Therefore, $2 \ell t + 1 = t (t + 1) (s-1)$, a contradiction, since left hand side is odd and right hand side is even. Therefore, ET $(K_{1,n}) = 1$.

Case (ii): Suppose n + 1 is even.

Let $V(K_{1,n}) = \{u, v_1, v_2, ..., v_n\}$, where u is the center of the star $K_{1,n}$.

Let
$$V_1 = \{u, v_1, v_2, ..., v_{\frac{n-1}{2}}\}, V_2 = \{v_{\frac{n+1}{2}}\}, V_3 = \{v_{\frac{n+3}{2}}\}$$
,

...,
$$V_{\frac{n+3}{2}} = \{v_n\}$$
. Then, $T_{V_1} = T_{V_2} = ... = T_{V_{\frac{n+3}{2}}} = 1$. Thus,

EΓ
$$(K_{1, n}) \ge \frac{n+3}{2}$$
. Suppose EΓ $(K_{1, n}) = \ell > \frac{n+3}{2}$. Let

 $\{V_1, V_2,..., V_\ell\}$ be a maximum equi-toughness partition of $K_{1,n}$. Let $u \in V_1$. Let $T_{V_1} = t$ (say). Let $|V_1| = k$.

Therefore,
$$\frac{k}{n+1-k}$$
 = t implies $k-1 = \frac{n-1}{t+1}$.

Since
$$T_{V_2} = T_{V_3} = ... = T_{V_s} = t$$
, $|V_2| = |V_3| = ... = |V_\ell| = t$

$$n - \frac{n-1}{t+1}$$
. Therefore, $n - \frac{n-1}{t+1} = t \ (\ell - 1), \ \ell \ge 2$ implies

$$\ell = \frac{nt+1}{t(t+1)} + 1$$
. Therefore, $\frac{nt+1}{t(t+1)} + 1 > \frac{n+3}{2}$ implies

$$(n + 1) t^2 + (1 - n) t - 2 < 0. (n + 1) t^2 + (1 - n) t - 2 = 0$$
 gives

$$t = 1$$
 or $\frac{-2}{n+1}$. Therefore, $(n+1) t^2 (1-n) t - 2 < 0$ implies t

lies between 1 and $\frac{-2}{n+1}$. Therefore t < 1, a contradiction,

since
$$\ell > \frac{n+3}{2}$$
 implies $t \ge 1$. Thus, $\ell = \frac{n+3}{2}$.

Hence ET
$$(K_{1,n}) = \frac{n+3}{2}$$
.

Proposition 2.7:

$$EI(P_n) = \begin{cases} 1 \text{ if } n = 3\\ \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ if } n \ge 4 \end{cases}$$

Proof.

It can be easily seen that ET $(P_3) = 1$. Let $n \ge 4$. Let $V(P_n) = \{v_1, v_2, ..., v_n\}$. If n is odd, then $\{\{v_1, v_{n-1}\}\}$, $\{v_2, v_3\}, \{v_4, v_5\}, ..., \{v_n\}\} = \{V_1, V_2, ..., V_k\}$, where $k = \left\lfloor \frac{n}{2} \right\rfloor + 1$ is an ET-partition with $T_{V_i} = 1$, for all i, $1 \le i \le k$. If n is even, then $\{\{v_1\}, \{v_2, v_3\}, ..., \{v_{n-2}, v_{n-1}\}, \{v_n\}\} = \{V_1, V_2, ..., V_k\}$, where $k = \left\lfloor \frac{n}{2} \right\rfloor + 1$

is a maximum ET-partition with $T_{V_i} = 1$, for all i, $1 \le i \le k$.

Therefore, EI $(P_n) \ge \left\lfloor \frac{n}{2} \right\rfloor + 1$. It can be easily seen that

ET
$$(P_n) \le \left\lfloor \frac{n}{2} \right\rfloor + 1$$
 if $n \ge 4$. Hence the result.

Proposition 2.8: Let G be a connected graph of order n with $\kappa(G) \ge 2$ and G^+ , the carona of G. Then ET $(G^+) = |V(G)| + 1$.

Proof.

Let V (G) = {u₁, u₂, ..., u_n } and let v_i be the pendent adjacent to u_i in G⁺, $1 \le i \le n$. Consider the partition $\pi = \{\{v_1\}, \{v_2\}, ..., \{v_n\}, V(G)\}$. π is an equi-toughness partition since $T_{V_i} = 1$ and $T_{V(G)} = 1$. Therefore, ET (G⁺) $\ge n$ + 1. Suppose ET (G⁺) = $t \ge n + 2$. Let $\pi = \{V_1, V_2, ..., V_t\}$ be a maximum equi-toughness partition of G⁺. If there are (t - 3) sets in π with cardinality at least 2, then $|V(G^+)| = 2n \ge (t - 3) + 3 = 2t - 3 \ge 2n + 1$, a contradiction. Therefore there are at most (t - 4) sets in π of cardinality at least 2. Therefore there are at least 4 sets in π each having cardinality 1. Since T_u is 1, if u is a pendent and $\frac{1}{2}$ if u is a

support, a support and a pendent cannot appear as singletons in the partition. Therefore, the singleton sets are either formed by pendents or by supports.

Suppose the singleton sets are formed by Case (1): pendents. The number of pendents available for the sets in the partition π with the cardinality at least 2 is at most n - 4. Also, $T_{v_i} = 1$ for all i, $1 \le i \le t$. $T_{v_i} = 1$ if and only if either $V_i = \{v\}$, where v is a pendent or there are k supports and a single pendent in V_i and the single pendent is not adjacent to any of the supports in V_i or $V_i = V$ (G). If $V_i = V$ (G), then V_i , $j \neq i$ are all singletons and each of them is a pendent. Therefore t = n + 1, a contradiction. Thus, no V_i is V (G). If every V_i is a singleton consisting of a pendent, then t = n, a contradiction. Therefore some V_i contains k +1 vertices where k of the elements are supports and the remaining is a pendent which is not adjacent to the supports $(k \ge 1)$. Since there are n supports and at most n - 4 pendents available for the sets containing k + 1 elements ($k \ge 1$), one of the sets

must contain at least 4 supports and the total number of sets is at most n - 4. Therefore $t \le n$, a contradiction.

Case (2): Suppose the singleton sets are formed by supports. Then $T_{v_i} = \frac{1}{2}$, for all $i, 1 \le i \le k$. Therefore any V_i

can not be made up of pendents only. Thus, either V_i is a singleton containing a support or V_i has both supports and pendents. Thus, with at most n - 4 supports available, we can make at most n - 4 sets. Therefore $t \le n$, a contradiction.

Definition 2.9: A double star denoted by $D_{r,s}$ is formed by joining the centers of two stars $K_{1,r}$ and $K_{1,s}$.

Proposition 2.10: For any tree T of order $n \ge 4$, ET (T) $\le \left| \frac{n}{2} \right| + 1$.

Proof.

Proof.

On the same lines as in Proposition (2.4) with the observation that $T_u = \frac{1}{\deg(u)}$, for any support u.

Remark 2.11: The bound is reached in P_n ($n \ge 4$), $D_{r,s}$ where r and s are of the same parity and Binary trees.

Proposition 2.12:

$$EI(D_{r,s}) = \begin{cases} \frac{|V(D_{r,s})|}{2} + 1 & \text{if } r, s \text{ are of the same parity} \\ \frac{|V(D_{r,s})|}{2} + 3 & \text{if } r, s \text{ are not of the same parity} \end{cases}$$

Let $V(D_{r,s}) = \{u,v,v_1,v_2,...,v_s,u_1,u_2,...,u_r\}$ where u,v are the centers of the double star $D_{r,s}$ and $u_i, 1 \le i \le r$ are the pendent vertices adjacent with u and $v_j, 1 \le j \le s$ are the pendent vertices adjacent with v.

Case (A): Let r, s be even.

Case (i): Suppose r = s.

Then
$$\{\{u, v, v_1, v_2,...,v_{s-1}\}, \{u_1\}, \{u_2\},..., \{u_r\}, \{v_s\}\} = \{V_1, V_2, ..., V_k\}, \text{ where } k = s + 2 = \frac{r+s}{2} + 2 = \frac{r+s+2}{2} + 1 \text{ is an}$$

ET-partition with $T_{V_i} = 1$, for all i, $1 \le i \le k$. Therefore, ET

$$(D_{r,s})| \ge \frac{|V(D_{r,s})|}{2} + 1.$$

Case (ii): Suppose r < s.

Then
$$\{\{u, v, v_1, v_2, ..., v_{\frac{r+s+2}{2}}\}, \{u_1\}, \{u_2\}, ..., \{u_r\}, \}$$

$$\{V_{\frac{r+s+2}{2}+1}\}, ..., \{v_s\}\} = \{V_1, V_2, ..., V_k\}, \text{ where }$$

$$k=1+\left(s-\frac{r+s-2}{2}\right)+r=\frac{r+s+2}{2}+1$$
 is an ET-partition with

$$T_{V_i} = 1$$
, for all i, $1 \le i \le k$. Therefore, $ET(D_{r,s}) \ge \frac{|V(D_{r,s})|}{2} + 1$.

Suppose ET
$$(D_{r,s}) > \frac{|V(D_{r,s})|}{2} + 1$$
. Let ET $(D_{r,s}) = t$ (say). Let

$$\pi = \{V_1, V_2, ..., V_t\} \text{ be a maximum equi-toughness partition.}$$
 If $|Vi| \ge 2$, for all i, then $|V|(D_{r,s})| \ge 2t > 2\left(\frac{|V(D_{r,s})|}{2} + 1\right)$, a

contradiction. Suppose there are
$$(t-3)$$
 sets each of which has cardinality at least two and the other three sets in π are of cardinality 1. Then

$$|V(D_{r,s})| \ge 2(t-3) + 3 = 2t - 3 \ge 2\left(\frac{|V(D_{r,s})|}{2} + 2\right) - 3 = \frac{|V(D_{r,s})|}{2} + 1, \quad \text{a}$$

contradiction. Therefore, the number of sets in π each of which has cardinality at least two is at most t-4. Thus, there are at least 4 sets in π which have cardinality 1. Therefore there are at least four pendent vertices which appear as singleton sets in π . Therefore $T_{V} = 1$, for all $i, 1 \le i \le k$.

Subcase (1): Let $u, v \in V_i$, for some i.

Then ω (V - V_i) = |V - V_i|, since $T_{V_i} = 1$, for all i. Therefore $|V_i| = |V - V_i|$. Suppose V_i has t pendent vertices. Then t + 2 = r + s + 2 - (t + 2). Thus, $t = \frac{r + s + 2}{2}$. Therefore ET (D_{r,s})

= 1 + (r + s -t) = 1 +
$$\frac{r+s+2}{2}$$
.

Subcase (2): Let $u \in V_i$ and $v \in V_j$. Let V_i contains t_1 pendent vertices adjacent to u and t_2 pendent vertices adjacent to v. Then $\omega(V - V_i) = (r - t_1) + 1$.

 $|V_i| = t_1 + t_2 + 1$. Therefore, $r - t_1 + 1 = t_1 + t_2 + 1$.

Thus, $r = t_2 + 2 t_1$. Let V_j contain t_3 pendent vertices adjacent to u and t_4 pendent vertices adjacent to v. Then $\omega (V - V_i) = (s - t_4) + 1$. $|V_j| = t_3 + t_4 + 1$. Therefore, $s - t_4 + 1 = t_3 + t_4 + 1$. Thus, $s = t_3 + 2t_4$.

Therefore, $|\pi| = 2 + (r + s) - (t_1 + t_2 + t_3 + t_4) = 2 + t_1 + t_4$. Consider the following LPP,

Maximize t₁ + t₄

Subject to the constraints

$$2t_1 + t_2 = r$$

 $2t_4 + t_3 = s$. The optimal solution of this problem is $t_1 = \frac{r}{r}$, $t_1 = \frac{s}{r}$ and $\max |\pi| = 2 + \frac{r+s}{r} = \frac{|V(D_{r,s})|}{r+r} + \frac{1}{r+r}$

$$\frac{r}{2}$$
, $t_4 = \frac{s}{2}$ and $\max |\pi| = 2 + \frac{r+s}{2} = \frac{|V(D_{r,s})|}{2} + 1$.

Case (B): r, s are odd

Case (i): Suppose r = s.

Then $\{\{u, v, v_1, v_2,...,v_{s-1}\}, \{u_1\}, \{u_2\},..., \{u_r\}, \{v_s\}\} = \{V_1, V_2,..., \{u_r\}, \{v_s\}\}$

$$V_2$$
, ..., V_k }, where $k = s + 2 = \frac{r+s}{2} + 2 = \frac{r+s+2}{2} + 1$ is

an ET-partition with $T_{V_i} = 1$, for all i, $1 \le i \le k$. Therefore,

$$\mathrm{ET}(\mathrm{D}_{r,s})| \geq \frac{|V(D_{r,s})|}{2} + 1.$$

Subcase (1): Let u, $v \in V_i$, for some i. Arguing as in the subcase (1) of case (A), we have $ET(D_{r,s}) = 1 + \frac{r+s+2}{2}$.

Subcase (2): Let $u \in V_i$ and $v \in V_j$. Arguing as in the subcase (2) of case (A), we get, $|\pi| = 2 + (r + s) - (t_1 + t_2 + t_3 + t_4) = 2 + t_1 + t_4$, where $2t_1 + t_2 = r$, $2t_4 + t_3 = r$. Since r

is odd,
$$t_2 \ge 1$$
 and $t_3 \ge 1$. Therefore, $t_1 + t_4 < r = \frac{r+s}{2}$.

Therefore $|\pi| = 2 + t_1 + t_4 < 2 + r = \frac{|V(D_{r,s})|}{2} + 1$. Therefore,

if u and v belong to different elements of π , then $|\pi|$ will not be maximum.

Case (ii): Suppose r < s. Then $\{\{u, v, v_1, v_2, ..., v_{\frac{r+s+2}{2}}\}, \{u_1\}, \{u_2\}, ..., \{u_r\}, \{v_{\frac{r+s+2}{2}+1}\}, ..., \{v_s\}\} = \{v_1, v_2, ..., \{v_s\}\} = \{v_1, v_2$

...,
$$V_k$$
}, where $k = 1 + \left(s - \frac{r + s - 2}{2}\right) + r = \frac{r + s + 2}{2} + 1$ is an

ET-partition with $T_{V_i}=1$, for all i, $1 \le i \le k$. Therefore, $\mathrm{ET}(\mathrm{D_{r,s}}) \ge \frac{|V(D_{r,s})|}{2} + 1 \; .$

Subcase (1): Let u, $v \in V_i$, for some i. Arguing as in the subcase (1) of case (A), we have ET $(D_{r,s}) = 1 + \frac{r+s+2}{2}$.

Subcase (2): Suppose $u \in V_i$ and $v \in V_j$. Arguing as in subcase (2) of case (i) of case (B), we get $|\pi|$ is not maximum.

Case(C): r and s are of opposite parity.

Without loss of generality, let r be odd and s be even. Suppose $|\pi| \ge \left\lceil \frac{|V(D_{r,s})|}{2} \right\rceil = \frac{|V(D_{r,s})|+1}{2}$. Suppose

$$ET (D_{r,s}) > \frac{|V(D_{r,s})|+1}{2}.$$

Therefore, ET $(D_{r,s}) \ge \frac{|V(D_{r,s})|+3}{2}$. Suppose there are (t -

2) elements of π having cardinality at least 2.

Then $|\pi| = |V_1| + |V_2| + ... + |V_t| \ge 2 (t - 2) + 2 = 2$

$$\left(\frac{|V(D_{r,s})|+3}{2}\right) -2 + 2 = |V(D_{r,s})| + 1, \text{ a contradiction.}$$

Therefore π has at least 3 singletons. Therefore $T_{V_i} = 1$ for all i.

Subcase (i): Suppose $u, v \in V_i$, for some i. But $\omega(V - V_i) = |V| - V_i|$. Let V_i have ℓ pendent vertices. Then $\ell + 2 = r + s$

1. Therefore, $2\ell = r + s - 2$, a contradiction (since left hand side is even and right hand side is odd). Therefore, u and v can not belong to the same element of π .

Subcase (2): Suppose $u \in V_i$ and $v \in V_j$. Let V_i contains t_1 pendent vertices adjacent to u and t_2 pendent vertices adjacent to v. Then ω $(V - V_i) = (r - t_1) + 1$. $|V_i| = t_1 + t_2 + 1$. Therefore, $r - t_1 + 1 = t_1 + t_2 + 1$. Thus, $r = t_2 + 2t_1$. Let V_j contain t_3 pendent vertices adjacent to u and t_4 pendent vertices adjacent to v. Then ω $(V - V_i) = (s - t_4) + 1$. $|V_j| = t_3 + t_4 + 1$. Therefore, $s - t_4 + 1 = t_3 + t_4 + 1$. Thus, $s = t_3 + 2t_4$. Therefore, $|\pi| = 2 + (r + s) - (t_1 + t_2 + t_3 + t_4) = 2 + t_1 + t_4$.

Consider the following IPP,

Maximize $t_1 + t_4$

Subject to the constraint

$$2t_1 + t_2 = r$$

$$2t_4 + t_3 = s$$
,

Since r is odd, $t_2 \ge 1$ and s is even, t_3 is even. The solution

for the above IPP is $t_1 = \frac{r-1}{2}$ and $t_4 = \frac{s}{2}$. Thus,

$$|\pi| = \frac{r+s-1}{2} + 2 = \frac{r+s+3}{2}$$
. Hence $ET(D_{r,s}) = \frac{|V(D_{r,s})|+1}{2}$.

Definition 2.13: Let G be graph with $V(G) = \{v_1, v_2,...,v_n\}$. The Mycielski transformation of G, denoted μ (G), has for its vertex set, the set $\{x_1, x_2,...,x_n, y_1, y_2,..., y_n, z\}$. As for adjacency, x_i is adjacent with x_j in μ (G) if and only if v_i is adjacent with v_j in G, x_i is adjacent with y_j in μ (G) if and only if v_i is adjacent with v_j in G, and v_j is adjacent with v_j in v_j

Corollary 2.14: If G is any connected graph of order n, then ET $(\mu(G)) = |V(\mu(G))|$, since $\kappa(\mu(G)) \ge 2$.

Observations 2.15:

- (i). If G is hamiltonian, then ET (G) = n, since every hamiltonian graph is 2-connected.
- (ii). If G is k-regular of order 2k + 1, then ET (G) = n, since G is hamiltonian.
- (iii). Let G be connected. Then, ET $(G) \leq ET (G^n)(n \geq 2)$, since G^n is a k (≥ 2) -connected graph.
- (iv). If G is a connected graph with $K(G) \ge 2$, then ET (G) \le ET (L (G)), where L (G) denotes the line graph of G.

3. References

- 1. C.A. Barefoot, R. Entringer and Henda C. Swart, Vulnerability in graphs A comparative survey, J. Combin. Math. Combin. Comput. 1 (1987), 13–22.
- 2. Berge, C., *Theory of graphs*, North-Holland, Amsterdam, (1984).
- 3. Chv'atal V., Tough graphs and Hamiltonian circuits, Discrete Math. 5, 215-228(1973).
- 4. Goddard, W. and Swart, H.C., On the toughness of a graph, Quaestiones Math. 13, 217-232 (1990).
- 5. Goddard, W., A note on the integrity of trees, Utilitas Math., 69:227-232, 2006.
- 6. Pippert, R., On the toughness of a graph, Lecture Notes in Math. Vol 303, pp. 225-233, Springer Verlag, 1972.