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Abstract

Let G = (V, E) be a simple graph. Let S be a subset
of V (G). The toughness value of S denoted by Ts is defined

as__lsl__, where a)(G —S) denotes the number of
(G -S)

components in G - S. If S = V, then @(G —S)is taken to

be 1 and hence Ty (= IV (G)l. A partition of V (G) into

subsets Vy, Va, ...Vt such that 7},’, 1<i<tisa

constant is called an equi-toughness partition of G. The
maximum cardinality of such a partition is called equi-
toughness partition number of G and is denoted by ET (G).
The existence of ET-partition is guaranteed. In this paper, a
study of this new parameter is initiated.
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1. Introduction
Let G = (V, E) be a simple graph. Then the toughness t(G)

of G is the minimum of _Jﬂ_ taken over all sets S of
(G -S)

vertices such that a)(G —S) >2, where a)(G) denote
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the number of components of G. A subset S of V(G) for
which the minimum is achieved is called a tough set. The
parameter toughness was introduced by Chv-atal [3].
Though much of the research has focused on the
relationship between toughness and hamiltonicity, some
general results were derived by Pippert and Goddard [5] and
Swart [4].

In the case of toughness of a graph, subsets S of V
with (G _s) 2 2 are alone considered. For any subset S of

V we can associate a value |Sl If a)(G —-S) =1,
(G -8)

then this value will be ISI. We call this value as the

toughness value of S and we denote this by Ts. If S=V,

then a)(G -S) is taken to be 1 and hence Tyy= IV(G)l.

A partition of V (G) into subsets V,,V,, ...,V, such that
TV,- , 1 £ i<t isaconstant is called an equi-toughness

partition of G. The maximum cardinality of such a partition
is called equi-toughness partition number of G and is
denoted by ET (G). A study of this equi-toughness partition
is made in this paper.

2.Equi-toughness partition

Definition 2.1: Let G = (V, E) be a simple graph. Let S be a
subset of V (G). The toughness value of S denoted by Ts is

S
defined as ——I-—I-—— , where @ (G -S) denotes the number
(G -9)
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of components in G - S. If S =V, then co(G —S) is taken
to be 1.

Definition 2.2: Let G = (V, E) be a simple graph. A
partition of V (G) into subsets V;, V,, ... V, such that

T,, 1 S 1<t is a constant is called an equi-toughness

partition of G. The maximum cardinality of such a partition
is called equi-toughness partition number of G and is
denoted by ET (G). Since V (G) itself is an equi-toughness
partition of G, the existence of an equi-toughness partition
in any graph is guaranteed.

Observation 2.3: For any graph G, 1 <ET (G)snand

the bounds are attained as seen in Theorem 2.4 and
Proposition 2.6 below.

Theorem 2.4: Let G be a nontrivial connected graph. Then
ET (G) = n if and only if G has no cut vertex.

Proof.

Suppose G is a nontrivial connected graph without cut
vertex. Then ET (G) =n.

Conversely, suppose ET (G) = n. Then T, is constant for
every vertex u € V (G). Since G is a nontrivial connected
graph, G has at least two vertices which are not cut vertices.
For such a vertex say u, T, =1. Hence T, =1 forallue V

(G). If G has cut vertex say v, then T, = ; < -1— <1,
axXG-v) 2

a contradiction. Therefore, G has no cut vertices.
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Propesition 2.5: ET (K,) = n; ET (Kp,) =m + n; ET(W,) =
n; ET(C,) =n.

Proposition 2.6:
+3
——, ifnisodd
ET(K,,) =
1 , otherwise
Proof.

Case (i): Let n + 1 be odd. Let n = 24,

Suppose ET (K, ,) > 1. Let {V,V,, ..., V;} be a maximum
equi-toughness partition of K, ,. Without loss of generality,
let the center of the star belong to V,. Let IVl = k and

k
Tv, = t. Therefore, T— =1, (since k < n +1, left hand
n —
(n +1)t
side is finite). Therefore, kK =-———— and hence
t+ 1

n-1
k-1= ( ) .

t+ 1
Since 7;,2 =T;,3 =.= TV‘ =t, IVl =IVil=.=IV,l=t

(n-1)
Thus, IVal + 1Val +... + IV =2¢-(k-1)=2 ¢ - —t——l- .
+

(n-1)
Therefore, 2 { - —— =t (s-1),s22.
t+ 1

Therefore, 2 £t + 1=t (t +1) (s-1), a contradiction, since left
hand side is odd and right hand side is even. Therefore, ET
(Kl,n) =1
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Case (ii): Suppose n +1 is even.
LetV (K ,) = {u, vy, Va,..., Vo}, Where u is the center of the

star Kl,n-
Let Vi={u,vi,v3, ..., V, ; 1 Vo={V, 1}, Vs={V,; },
2 2 2
v Vo3 = {Va}. Then, Ty =T, =..=T, =1 Thus,
2 2

n+3
. Suppose ET (K, ,) = ¢ >—2-—. Let

BT (K, ) > 252

{V1, Va...., V, } be a maximum equi-toughness partition of
Kin». Let u € V, Let 7;,,= t (say). Let IV)l = k.

n-1
Therefore, ———=timplies k-1=——o.
n+l-k t+1
Since T;,z =T",3 = .= 7;,, =t, Vol =Vl =.. =1V, =
n-1 n-1 L
n - ——. Therefore, n - =t (¢ -1), £ 2 2 implies
t+1 1
nt+1 nt+1 n+3 .
= + 1. Therefore, +1> implies
tit+1) ti+1) 2

m+1) 2+ 1-n)t2<0.(n+1) €+ (1-n)t-2=0gives

. Therefore, (n +1) € (1 - n) t -2 < 0 implies t

t=1or
n+1

-2
lies between 1 and —1 Therefore t < 1, a contradiction,
n+

n+3
implies t 2 1. Thus, ¢ = —2—

since £ >
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n+3
Hence ET (K, )= —.

2
Proposition 2.7:
lifn=3
EI(P)=
(%) [-”-J +1ifn 4
2
Proof.

It can be easily seen that ET (P;) =1. Let n 2 4. Let
V(P,) = {vi,v2, ...,vp }. If n is odd, then {{vy, vn1}},
{va,v3},{Vs,vs}, ... {vo}}= { Vi, Va...,Vi}, where

n
k =l§-J + lis an ET-partition with Tv, =1, for all i,
1 <£i <k If n is even, then {{v;}, {v. ,vs}....,
n
{vu.z,vn_l},{v,,}} = { V], Vz,..., Vk }, where k= [EJ + 1

is a maximum ET-partition with 7, = 1, foralli, 1 Si<k.

n
Therefore, EI (P,) 2 [EJ + 1. It can be easily seen that

n
ET (P,) < [EJ + 1 if n = 4. Hence the result.

Proposition 2.8: Let G be a connected graph of order n with
¥ (G) 2 2 and G*, the carona of G. Then ET (G*) =V (G)|
+ 1.
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Proof.

Let V (G) = {uy, uy, ..., uy } and let v; be the pendent
adjacent to w; in G*, 1 < i < n. Consider the partition
Tt = {{vi},{v2}, ..., {Va}, V(G)}. m is an equi-toughness

partition since 7}, = 1 and Ty(g) =1. Therefore, ET (G*) 2 n

+ 1. Suppose ET (G*) =t2n+2. Letn={V,, V,, ..., V. }
be a maximum equi-toughness partition of G* If there are (t
- 3) sets in © with cardinality at least 2, then IV (G*)l =2n 2
(t-3)2+3=2t-322n+ 1, a contradiction. Therefore
there are at most (t — 4) sets in ® of cardinality at least 2.
Therefore there are at least 4 sets in ® each having
cardinality 1. Since T, is 1, if uis a pendentand 1 ifuisa
2

support, a support and a pendent cannot appear as singletons
in the partition. Therefore, the singleton sets are either
formed by pendents or by supports.

Case (1): Suppose the singleton sets are formed by
pendents. The number of pendents available for the sets in
the partition t with the cardinality at least 2 is at most n - 4.

Also, T;,‘ =1foralli,l1 it T, = 1 if and only if either

V; = {v}, where v is a pendent or there are k supports and a
single pendent in V; and the single pendent is not adjacent to
any of the supports in V; or V; =V (G). If V; =V (G), then
Vj, j # i are all singletons and each of them is a pendent.
Therefore t = n + 1, a contradiction. Thus, no V;is V (G). If
every V; is a singleton consisting of a pendent, thent=n, a
contradiction. Therefore some V; contains k +1 vertices
where k of the elements are supports and the remaining is a
pendent which is not adjacent to the supports (k = 1). Since
there are n supports and at most n - 4 pendents available for
the sets containing k + 1 elements (k = 1), one of the sets
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must contain at least 4 supports and the total number of sets
is at most n - 4. Therefore t < n, a contradiction.
Case (2): Suppose the singleton sets are formed by

supports. Then 7, =1 forall i,1<i<k. Therefore any V;
2

can not be made up of pendents only. Thus, either V; is a
singleton containing a support or V; has both supports and
pendents. Thus, with at most n - 4 supports available, we
can make at most n - 4 sets. Therefore t < n, a contradiction.

Definition 2.9: A double star denoted by D, is formed by
joining the centers of two stars K, and K, ;.

Proposition 2.10: For any tree T of order n 2 4, ET (T) <

oE

Proof.
On the same lines as in Proposition (2.4) with the

observation that T, = , for any support u.

deg(u)
Remark 2.11: The bound is reached in P, (n 2 4) , D,
where r and s are of the same parity and Binary trees.

Proposition 2.12:

MH if r,s are of the same parity
EI(D.,) M if 1.5 are not of the same parity
Proof.
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Let V (Dy,) = {u,v,v,vs,...,Vs, U3,Us,..., U} where u, v are the
centers of the double star D,;s and v;, 1< i < r are the
pendent vertices adjacent with u and v;, 1< j < s are the
pendent vertices adjacent with v.

Case (A): Letr, s be even.
Case (i): Supposer=s.
Then {{ua V, Vi V2,04, V5 }9 {ul}’{u2}1--"{ur}v {VS}} = {Vh

Vi ..y Vi}, Wherek=s +2 = r-;s+2= r+;+2+1 is an

ET-partition with T}, = 1, for all i, 1 <i < k . Therefore, ET
(Do) zl(_‘z’_rzﬂﬂ .

Case (ii): Supposer <s.
Then {{u, v, Vi, Voo, V,0}h {wh{w}...{u},
2

{Vysssz b oo {va}} = { Vi, Va .., Vi}, where
=2

k=1+(s_"+5‘2J+,=ﬂ'L2_+l is an ET-partition with
2

T, = 1,forall i, 1 <i <k Therefore, ET(D,,) 2!V(Du)! ;.
2

Suppose ET (D;;) > 'V(lzu)' 41+ Let ET (D;) = t (say). Let

= {V,, Va, ..., V;} be a maximum equi-toughness partition.

If IVil 2 2, for all i, then IV (D, > 2t > 2{IV(D,,,)IHJ, a
2

contradiction. Suppose there are (t — 3) sets each of which
has cardinality at least two and the other three sets in 7 are
of cardinality 1. Then
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Iv(D,,)! V(D)1 ., a
IV(D,,)22(t-3)+3=2t -322 —2—+2 —3=—2-+1

contradiction. Therefore, the number of sets in ® each of
which has cardinality at least two is at most t - 4. Thus, there
are at least 4 sets in © which have cardinality 1. Therefore
there are at least four pendent vertices which appear as

singleton sets in 7. Therefore 7;,‘ =1, foralli,l €i<k.

Subcase (1): Let u,v € V;, for some i.
Then o (V - V;) =V - V|, since Tv, =1, for all i. Therefore

IVil =1V - V; |. Suppose V; has t pendent vertices. Then t + 2
=r+s+2-(t+2). Thus, ¢ = r+s+2. Therefore ET (D, ;)
2

r+s+2

2

Subcase (2): Let ue V; and v € V;. Let V; contains t,
pendent vertices adjacent to u and t; pendent vertices
adjacenttov. Then @ (V -V))=(r-t;) + L.
I Vil =1t; + t3 + 1. Therefore, r—t; + 1=t;+ t, +1.
Thus, r=t; + 2 t;. Let V; contain t; pendent vertices adjacent
to u and t, pendent vertices adjacent to v. Then ® (V - V;) =
(s-t) + 1.1 Vjl=t3+ t4 + 1. Therefore, s - ts + 1=t + t4 +1.
Thus, s =t3 + 2t,.
Therefore, Il =2+ (r+s)-(ti+t+t3 + ) =2+ t; + L4
Consider the following LPP,
Maximize t; + t4
Subject to the constraints

2 +t=r

=1l+(r+s-t)=1+

206



2ty + t3 = 5. The optimal solution of this problem is t; =

r s r+s V(D)
—,t4=—and max Inl=2 + = - +1
2 2 2 2

Case (B): r, s are odd
Case (i): Suppose r =s.
Then {{u$ V, Vi, V250.,Vs }s {“l}a{UZ}r--,{ur}’ { Vs} }= { V|,

r+s r+s+2 .
+2= ——2—+l is

V2, ....,Vi}, where k=s + 2 =

an ET-partition with Ty, = 1, for all i, 1 < i < k. Therefore,

IV(D, )l
ET(D,s)l 2 ———— +1.
2
Subcase (1): Let u, v € V,, for some i. Arguing as in the
r+s+2
2
Subcase (2): Let ue V; and v € V;. Arguing as in the
subcase (2) of case (A), we get, ITl =2 + (r+s)-(t; +t, +
tb+t) =2+t +1t, where 2t; +t,= r, 2t + tz= r. Sincer
r+s

2

+ 1. Therefore,

subcase (1) of case (A), we have ET(D,) = 1 +

isodd, t; 2 1 and t; 2 1. Therefore, t; + t; <t =

Therefore Itl=2 + t; +t4 <2 +r= _’ v,
2

if u and v belong to different elements of =, then Il will not
be maximum.
Case (ii): Suppose r < s. Then {{u, v, vy,v5, ...,

v,-+s+2 }’{ul}’{uZ}’"'s{ur}’ {vﬁﬂ }’ ooy {Vs}}= { Vl; V2,

2 2
., Vi}, wherek =1 + [s_r+s—2) +r="%5%2 jisan
2 2
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ET-partition with T =1, foralli, 1 i< k. Therefore,
ET(D,) 2 V(D) IV(D I,

Subcase (1): Let u, v € V,, for some i. Arguing as in the

subcase (1) of case (A), we have ET (D,) =1 + r+s+2 .

Subcase (2): Suppose ue V; and v € V;. Arguing as in
subcase (2) of case (i) of case (B), we get Inl is not
maximum.

Case(C): rand s are of opposite parity.

Without loss of generality, let r be odd and s be
Il V(D
even. Suppose Il Z’VIV(lz)m) l= ( ;‘) +1 . Suppose

Iv(D,,)1+1
2

ET (D) >

. Suppose there are (t -

Therefore, ET (Dy,) 2 IV(D,,)!+3
2

2) elements of  having cardinality at least 2.
Then Il = IVil+ IVl + .. + IVl 22 (t-2)+2=2

IV(D,,)1+3 -
_T-___ 2+ 2 =1V (D)l + 1, a contradiction.

Therefore 7 has at least 3 singletons. Therefore R =1 for
all i

Subcase (i): Suppose u,v € V;, for some i. But @ (V - V;) =
IV -Vil. Let V; have £ pendent vertices. Then £ + 2 =r+s -
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1. Therefore, 2¢ = r + s -2, a contradiction (since left hand
side is even and right hand side is odd). Therefore, u and v
can not belong to the same element of .

Subcase (2): Suppose ue V; and v € V. Let V; contains t,
pendent vertices adjacent to u and t, pendent vertices
adjacenttov. Then@ (V-V))=(r-t))+ L. IVi=t; +t, + 1.
Therefore, r-t,+ 1=t + t; +1. Thus, r =t, + 2t;. Let
V; contain t; pendent vertices adjacent to u and t, pendent
vertices adjacent to v. Then @ (V - Vi) = (s - t5) + L. IVjl =13
+ t4 + 1. Therefore, s - t4 + 1=t;3 + t4 +1. Thus, s = t; + 2t,.
Therefore, Il =2+ (r+s)-(ti +h+t3+t) =2 +t; + ta.

Consider the following IPP,
Maximize t; + t4
Subject to the constraint
2ty +ty=r1
2t + t3=s5,
Since ris odd, t_2 2 1 and s is even, t; is even. The solution

— )
for the above IPP is t; = ’Tl and t, =7 Thus,

|7 l= r+s—l+2= r+s+3 . Hence ET(Dr.s) = IV(Drz,;)l'l'l .
2 2
Definition 2.13: Let G be graph with V(G) ={v,, v2,...,Vq}.
The Mycielski transformation of G, denoted L (G), has for
its vertex set, the set {X;, X2....Xn, Y15 ¥25re» ¥Yn» 2}. As for
adjacency, x; is adjacent with x; in p (G) if and only if v; is
adjacent with v; in G, x; is adjacent with y; in p (G) if and
only if v; is adjacent with v; in G, and y; is adjacent with z in

L(G)forallie{l,2,..,n}.
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Corollary 2.14: If G is any connected graph of order n, then
ET (1 (G)) =V (W(G))l, since k(W (G)) 2 2.

Observations 2.15:

(i). If G is hamiltonian, then ET (G) = n, since every
hamiltonian graph is 2-connected.

(ii). If G is k-regular of order 2k +1, then ET (G) = n, since
G is hamiltonian.

(iii). Let G be connected. Then, ET (G) < ET (G ")(n = 2),
since G" is a k (22)-connected graph.

(iv). If G is a connected graph with X°(G) 2 2, then ET (G)
< ET (L (G)), where L (G) denotes the line graph of G.
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