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Abstract

In this paper fuzzy inner product on a real vector space is introduced.
The notion of fuzzy inner product is defined. Some of its properties are
studied.
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1 Introduction

The concept of metric space is based on the distance between two points.
Menger (8] defined statistical metric space based on the concept that the
probality of the distance between z and y is less than ¢. Schweizer and Sklar
[9] introduced the concept of t-norm. They generalized statistical metric
space and defined probablistic metric space. Kromosil and Michalak (7]
generalized the concept of probablistic metric space which is called a KM
fuzzy metric space. George and Veeramani [6] modified KM fuzzy metric
space. Also George defined fuzzy normed space. Modified definition of
fuzzy normed is given in [1]. In this paper the concept of fuzzy inner
product is space is defined. Also the fuzzy normed linear space induced by
a fuzzy inner product is studied.

2 Preliminary Results

Definition 1 A binary operation * : [0,1} x [0,1] — [0,1] is a t-norm if
* satisfies the following conditions:

1. = is associative and commutative

2. axl=a forall a € [0,1]
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3. axb< cxd whenever a < cand b <d for all a,b,c,d € [0,1)

Definition 2 A 3-tuple (X, M, *) is said to be a fuzzy metric space if X
is any arbitrary set, * is continuous t-norm and M is a fuzzy set on X2 x
(0,00) satisfying the following conditions:

1. M (z,y,t) >0 for all z,y € X and t € (0,00).
2. M (z,y,t)=1ifand only if z=y.

3. M(z,y,t) =M (y,x,t).

4. M (z,z,t+3) 2 M (z,y,t) * M (y,2,8).

5. M (z,y,-): (0,00) — [0,1] is continuous

for all z,y,z€ X and t,5 > 0.

M (z,y,-) is non dcreasing for all z,y,€ X. Let (X, M, *) be a fuzzy
metric space. An open ball B (z,7,t) with centre z € X and radius r,0 <
r < 1,t > 0, is defined as B (z,7,t) = {y € X : M (z,y,t) > 1 —7}. Let
7={A C X :z € Aif and only if there exist there exist 7,¢ > 0,0 < r < 1,
such that B (z,r,t) C A}. Then 7 is a topology on X .In a fuzzy metric
space every open ball is an open set. The topology 7 is first countable
and and also Hausdorff. A sequence (z,) in a fuzzy metric space (X, M, )
converges to z € X if for given r,t > 0,0 < r < 1, there exists a positive
integer ng such that M (z,,z,t) > 1—r,n > ng. Clearly a sequence (z,) in
a fuzzy metric space is convergent to z € X if and only if M (z,,z,t) — 1
as n — oo. A sequence (z,) in a fuzzy metric space (X, M, ) is said to be
a Cauchy sequence if for given r,t > 0,0 < 7 < 1, there exists a positive
integer ng such that M (z,,Tm,t) > 1—r for all m,n > ng. A fuzzy metric
space is complete if every Cauchy sequence in it converges.

Definition 3 A 3-tuple (X, N, ) is said to be a fuzzy normed linear space
if X is real or complex linear space, * i3 continuous t-norm and N is a
fuzzy set on X x (0, 00) satisfying the following conditions:

1. N(z,t) >0 for all z € X and t € (0,0).
2. N(z,t)=1ifand only if z=0.
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3. N(kx,t):M(:z:, ],‘c—l)
4. N(z+y,t+38) > N(zt)*N(y,3).

5. N(z,-):(0,00) — [0, 1] s continuous
for all z,y,€ X ,t,8 >0 and k is a scalar.

We write a fuzzy normed linear space briefly as F-normed space. Let
(X,N,*) be an F-normed space. For any ¢ > 0 and for all z,y € X
define M (z,y,t) = N (z —y,t). Then (X, M,*) is a fuzzy metric space.
A sequence (z,) in an F-normed space (X, N, *) converges to z € X if
for given 7t > 0,0 < r < 1, there exists a positive integer ng such that
N(z, —z,t) > 1—r,n > ng. The sequence (z,) in an F-normed space
is convergent to x € X if and only if N(z, —z,t) - 1 asn — oo. In
an F-normed space, the operation of addition is jointly continuous. A
sequence (z,) in an F-normed space (X, N, «) is said to be a F-Cauchy
sequence if for given 7,¢t > 0,0 < r < 1 there exists a positive integer ng
such that N (z, — zm,t) > 1 —r for all m,n > np. An F-normed space
is said to be complete if every F-Cauchy sequence in X converges to an
element in X. A complete F-normed space is called as F-Banach space. A
linear transformation T from an F-normed space (X, N, *) to an F-normed
space (X’,N',*) is said to be bounded if there exists k& > 0, such that
N'(T (z),kt) 2 N (z,t) forallz € X and t > 0.

3 Fuzzy Inner Product Spaces

Definition 4 A triplet (X, J, *) is said to be a fuzzy inner product space
if X is a real linear spacex is continuous t-norm and J is a fuzzy set on
X2 x (0,00) satisfying the following conditions:

1. J(z,y,t) >0 forall z,y € X and t € (0,0).
2. J(z,z,t) =1 if and only if z=0.

3. J(z,u,t) = J (y,2,¢).

4. J(oz,By,t) > J (x, v, TﬁT) , @, B are scalars.

o

J(Z+y,2t+38)2J(x,21t)xM(y,zs)
6. J(z,v,Vst) > M (z,z,t) x M (3,9, s)
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7. J(z,9,-) : (0,00) — [0, 1] is continuous
foral z,y,z€ X and t,s >0

Example 1. Consider R?, let z,y € R2, where z = (z;,72) and y =
-1
(¥1,y2). Define J (z,y,t) = (exp (L"—"—E‘M)) . Then (R?, J,min) is a
fuzzy inner product space.
Clearly J (z,y,t) > 0 and J(z,y,t) = J(y,2,t). Also J(z,z,t) = 1 &
z=0.
Now

J (az, By, t)

— | aBz11 + afzay; | -
(exp(iaﬁ“z; + Tay |))"1
- (exp( 1t1 292 ))

-1
| z191 + Z2y2 | (
(”“’(_m )) =7 (o rag)

Without loss of generality assume that J (z, z,t) < J(¥, 2, )
i -1

1
|x1z1+x3z3| |g1z1+mzz|
ie Jz121+2222| > ly1z1+y222| ie Jz121+2222] > [(®1+y1) 21 +(x2+y2) 22]
i) t — 8 Y t - s+t !
-1 -1
. Z1214+T22 T1+y1)z1+(x2+y2)2
1.e.,(exp(| 1 lt 2 2|)) < (exp(“ 1+31)z1 +H(za+y2) 23]

8+t
ie, J(z,2t) < J(z+y,2t+3). Therefore min{J (z, 2,t),J (v, 2, )}
J(z+y,2t+8)
To prove axiom 6, without loss of generality assume that J(z,z,t) <
J (¥,9,9).

e (2510 < e 2"

|=1-:=2| > |y1+yz| ie., st|zl+ H| > Iy +y2|

ie., |=1+“§| l‘”x'*"g”!’l*lﬂ > |a=xg1+zzgz|
smcelwl + wzl lv% + yzl > |z + wzyzl
1

This implies(exp (@l))-l < (exp (mxiﬂ_:ﬂz_l))_ )

IA

A
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ie.,J(z,z,t) < J (z,y, Vst)
Therefore min{J (z,z,t),J (v,v,9)} < J (2,9, Vst) .
Clearly J (z,y,-) : (0,00) — [0,1] is continuous. Therefore (R2, J, min) is
a fuzzy inner product space.
It canbe easily verified that above example holds good with the t-norm

a*b=ab.

Example 2. Let X = Rand let z,y € R. Define fort > 0,J (z,y,t) = 1
ifz=00ry=0, J(z,y9,t) =lifz # 0and y # 0,0 <! < 1. Then
(R, J, min) is a fuzzy inner product space.

Axioms 1, 2 and 3 can be easily proved. If z # 0 and y # 0, then for
t > 0,J(ax,By,t) =1 and J(x,y, ]j-[) = [. Therefore J (az,By,t) =

J(m,y,];‘m). Ifz =0 and y # 0 then for ¢t > 0, J(az,By,t) = 1

and J (:z:, v, ]ﬁ-[) = 1. Therefore J (az,By,t) = J (z, v, ]a_tﬁT) . Similarly
we can prove for the case z = 0 or y = 0. Suppose z # 0, y # 0 and
2#0. Lett,s > 0. Ifz +y # 0 then J(z+y,z,t+3) =, J (z,2,t) = |
and J (y,2,t) = L.

Therefore J (z + y, 2,t + 8) = min{J (z, z,t) , M (y, 2,8)}.

Ifz+y =0then J(z+y,2t+38) = 1,J(z,2¢t) = ! and J(y,2,t) =
l. Therefore J(z +y,2,t+3) > min{J (z,2,t), M (y,2,8)}. J(z,y,t) =
J(y,z,t). Suppose z = 0, y # 0 and z # 0. Let ¢,3 > 0, then
J(z+y,zt+s8)=1 J(z,21t)=1and J(y,zt) =1

Therefore J (z + v, 2,t + 8) = min{J (z, 2,t) , M (y, 2, 5)}. In the sameway
other cases can be proved. Now If ¢ # 0, ¥ # 0 and ¢,s > 0. Then
J(:z:,y,\/-s?) =1,J(z,z,t) =1l and J (y,y,t) =1

Therefore J (z,y,Vst) = min{J(z,z,t),M (y,y,5)}. Suppose z = 0,
y 7 0 then

J(z,y,\/E) =1,J(z,z,t) =1and J(y,y,t) =L.

This implies J (z,y, \/Qﬂ > min{J (z,z,t),M (y,y,8)}. Similarly other
cases can be proved.

Clearly J (z,¥,) : (0,00) — [0,1] is continuous. Therefore (R, J, min) is
a fuzzy inner product space.

Example 3. Let (X, ()) be an inner product space. Define J (z,y,t) =
m-(f—:,—yﬂ. Then (X, J, min) is a fuzzy inner product space.
Clearly J(z,y,t) > 0. Also J(z,z,t) = 1 & z = 0. and J (z,9,t) =
J (y,2,t).

— — t —_ :
Now J (a2, y,) = myrasss = WleAlezd = il
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=J (a:,y, lﬁT) . To prove axiom 5, with out loss of generality assume
that J (z,z,t) < J (v, 2,9).
Thengroy < srpfyamies 152 2 1y, 2)
ie,(1+ %) [{z, 2)| 2 [{z, 2)| + [{y, 2)| 2 [z + 9, 2)|,
3 Z,2 T4y, 3 3
ie,l+ “‘:‘u >1+ “—:"—m’he-wé,zn < (a+t)_"_’|‘2';+u'z)l,1.e.,J (z,2,t) <
J(@+y,2zt+s).
Therefore min{J (z, 2,t),J (y,2,8)} < J(z +y,2,t +3).
Now with out loss of generality assume that J (z,z,t) < J(v,%, ).
Thent-ﬂ(;,:" < s+|(sy,g)|, i.e,,iliﬂliﬁ&‘zﬂ = (=, z)| [y, v}l -
ie., 5B > (7, )| sincel(z, y)|* < |(z, =) |3 )]
This implies 1+ 152 > 14 (28l o —ptp < vt
ie.,J (z,7,t) < J (z,y, Vst).
Therefore min{J (z,z,t),J (,9,3)} < J (2,9, Vst) .

Clearly J(z7y1') : (O) 00) — [0’ 1]
is continuous.Therefore (X, J, min) is a fuzzy inner product space.

With the help of the fuzzy inner product on a linear space X, we can define
a F-norm as follows.

Theorem 1. Let (X,J,min) is a fuzzy inner product space.Define
N (z,t) = J (z,,t2) . Then (X, N, min) is an F-normed space.
Clearly N (z,t) = J (a:,:z:,tz) > 0. AlsoN (z,t) =1& J (:v, z, t2) =le&
z=0.
Now N (az,t) = J (az,az,t2) = J (:v, z, ﬁ;) =N (:c, IEtzT) .
It is clear that N (z + y,t +s)=J (x+y,z+y,(t+s)2)
=J(z+y,z +y,t% + 5%+ 2ts)
> min{J (z,z +y,t> +1ts),J (,z +v,8> +ts)}.
> mm{J (SL‘, T, t2) J (ya z,ts), J (ZI, Y, 32) »J (v, (L',tS)}
= min{J (z,z,t?) ,J (v, %, ts),J (3,9, %) , }.
> min{J (z,z,t?) ,J (z,2,?) ,J (v, v, 8%) , J (v, %, %)}

= min{J (2,2,t?),J (¥,9,5°)} = min{N (z,t), N (v, 5)}.
Clearly N (z,-) : (0,00) — [0, 1] is continuous.Therefore (X, N, min) is an

F-normed space. O

Proposition. Let (X, J, min) is a fuzzy inner product space.Then z,y € X,
t > 0, the following are true
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) 70,3,8) > T (2,3, 3)
ii) J(0,0,t) > J (2,9, %) .
Proof: J(0,y,t) = J(z —z,y,t) > min{J (z,2,%),J (-z,9,§)} =

J(z,2,%) . Also J(0,0,t) = J (z — z,0,t) >

min{J (z,0,),J (-2,0,5)} = J (2,0,%) 2 J (z,3, %)

Proposition. Let (X, J, min) is a fuzzy inner product space. Then
z,y € X,t >0, min{J (z+y,z+v,t?) ,J (z—y,z —y,t3)} >

min{J (x, z, %) o J (y, Y %)}

Since we are able to define a norm on X with the help of the inner
product , the fuzzy inner product space (X, J, min) becomes a F- normed

space (X, N,min). If the fuzzy inner product space is complete in this
F-norm then X is called a Fuzzy Hilbert space.

Example 4. In example (1) we proved (R?,J,min) is a fuzzy inner
-1
product space with the inner product J (z,y,t) = (exp (Jﬂ&’{ﬂﬂl))
where 2 = (1, z2) and y = (y1,%2) - Now we prove that it is a fuzzy Hilbert
space with the induced F-norm N (z,t) = J (z, z, t2).

We have to show that any Cauchy sequence in (R?, N, min) converges
in this norm. Let (z(™) be a Cauchy sequence in (R?, N, min). Then any
term z(™ of this sequence is of the form z(*) = (5 (), 5&")) . Since (z(™) is
a Cauchy sequence we have N (z(® — 2(™z,t) — 1 asn — co. This implies

n m n m -1 n m n m
(exp (gil___eL)_z%M)) — las n — oo. i.e_’gil__el_ﬁ;gw —_— 0
as n — oo. This implies £ — £ — 0,i = 1,2. This showes that for
i =12 (g,("’) is a Cauchy sequence in R. Since R is complete implies
fg")) ,t = 1,2 converges in R.Let £§") — &; as n — oo. Define z =

(&1,€2) € R Now N (z(™ — a:,lt) =J (™ - z,2() — z,82) =

(exp (MM))— — 1 as n — oo. This implies the sequence
(z(™) converges to z. Therfore (R?, J, min) is a fuzzy Hilbert space.

Now we define fuzzy inner product in product spaces.

Theorem 2. Let (X, J1, *) and (Y, Jz, *) be fuzzy inner product spaces.
Then (X x Y, J, #) is a fuzzy inner product space where
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J((zl’yl) 3 (:Bz,yz),t) = Jl ($1,$2,t)*J2 (ylay%t) 121,22 € X and Y1,Y2 €
Y. Also X x Y is a Hilbert space if X and Y are Hilbert spaces.
Proof: ClearlyJ ((z1,%1), (z2,%2),t) > 0. Also

J ((z1, 1), (z1,91),t) =1 & Ji (21,71, 8) = Lo (y1, 91, 8) = 1 & (z1,31) =1

Clearly J (($1ayl) :(xZ, y2) ’ t) =J ((xz’ y2) ’ ($1, yl) t) °
Now.J (a (xl,yl) B ($2) y2) ’ t)

= J1 (az1, B2, t) * J2 (ay1, By, t) = 1 (xl,xz, l?tﬁr) * J (yl,yz, ]#r)
=J ((xl, v1),(z2,92), Ta%f) . It is clear that

J((z1,01) + (z2,92), (x3,¥3) , £ + 8)

J ((zl + 2,41 + y2) ) ($3’ y3) i+ 3)

Ji (21 + 22, 73,t + 8) * T2 (Y1 + Y2, 43, + 3)

J1 (21, x3,t) * Jy (72,73, 8) * J2 (Y1, Y3, t) * J2 (y2, 93, 8)
J ((z1,91), (z3,¥3), t) * J (2, ¥2), (23, ¥3), t)

vl

Now
J ((zl:yl) y(Z2,92) \/R)

J1 (331,3‘2,\/3) * Jo (yl,yz,\/s—t)
Jl (x1!x17t) * Jl ((62,102,3) * J2 (yl’ylit) * J2 (y2’y2a 3)
J ((xl’yl) ) (xhyl) ’t) * J2((z2$ y2) ) (w2ay2) ) 8)

v

Clearly J ((z1,%1), (z2,%2),-) : (0,00) — [0, 1] is continuous.

Therefore (X x Y, J,*) is a fuzzy inner product space. Let N ((z,y),t) =
J((z,¥),(z,9),t), N (z,t) = J1 (z,x,t)) and N2 (z,t) = J2 (x, z,t)) be the
induced fuzzy norms. Then N ((z,y),t) = Ni(z,t) * N2(y,t) .Suppose X
and Y are Fuzzy Hilbert spaces. Let (z,,yn) be an F-Cauchy sequence in
X xY. Then for given r,t > 0,0 < 7 < 1 there exists a positive inte-
ger k such that N ((zn,¥n) — (Tmy¥m),t) > 1 —r,m,n,> k. This implies
Ny (zp — Tm,t) > 1 —r and N2 (yn — Ym,t) > 1 —r for all m,n, > k.Since
X and Y Fuzzy Hilbert spaces , £, — z and y, — y for some z € X and
y € Y .Therefore N ((zn,¥n) — (,¥),t) — 1 as n — oo. Hence (Zn,yn)
converges to (z,y) . Therefore X x Y is a Fuzzy Hilbert space. O
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