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1. Introduction

Construction of finite graphs using characters of finite groups is not a new
theme. In the early 1940’s, Richard Brauer, one of the pioneers of modular
representations, constructed a graph using modular characters, which were
later called ‘Brauer Graphs’. [2] Of late, people working on representations
of algebraic groups and related finite groups extensively use Brauer Trees.
Recently, new finite graphs were constructed using group characters by
Chigira and Iyori [3], Manz [17], Willems [16] et al.

2. The Relative Character Graph I' (G, H ) background from
Group Representations

We now proceed to describe the graph I' (G, H) with a brief introduction to
the representation (character) theory of finite groups. We refer to the
treatises of Curtis and Reiner [5] and Isaacs [8] for definitions, notations
and properties.

2.1. Definition
Let V be an n dimensional vector space over a field F, and let G be a finite

group. A representation of G with vector space V is a homomorphism £©
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of G into the group GL(V), the group of invertible linear transformations
of V. The dimension n is called the degree of ©.

Choosing a suitable basis of V, we can convert each element of p(s), s&
G, into GL (n, F) and the resulting homomorphism is called the (matrix)
representation of G associated to /2. (Of course, change of basis of V
results in a different matrix, but the original and the new matrices are
similar. This crucial fact will be used when we pass on to characters).

We use the same notation /2 for the representation through the space V or
through matrices, it is sufficient to take F as the complex field C, which is
algebraically closed and has characteristic 0. Such representations are
called ‘ordinary representations’ in the literature. (The latest terminology is
‘non-describing’.) The homomorphism which takes every element of G
into the complex numberl is called the trivial representation and is usually

denoted by 1 5. .

2.2. Definition
A subspace W of V is said to be G- invariant (or /O - invariant or simply
invariant) if /2 (s) (w) € W for all WE W and s€G.

2.3. Definition
A representation ( 22,V) is irreducible if (0) and W are the only invariant

subspaces of V. Otherwise, it is said to be reducible.

2.4. Theorem(Maschke) (see e.g. [8])
Every representation of G is a (finite) direct sum of irreducible
representations of G. )

2.5. Definition

Let © be a (matrix) representation of G. Then the character X, of G
(or simply X, x: G — F given by >X(s) =Trace (©). whereas Xis
not a homomorphism, it has the excellent property that x(zsz ™) = x(s)
for all 5,2 &G (ie, X is invariant on the conjugate classes of G). Further

two representations of G are equivalent if and only if they have the same
character (in our complex case, or, more generally, when the characteristic
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of F does not divide O(G)). This enables us to pass on from representations
into characters.

2.6. Definition
If & and"/}are two characters of G, then the scalar product is defined

as (Qy) = gﬂ sy(s)

O(G')

2.7.Properties
1. & is irreducible if and only if ( &, &) =1.

2. The number of inequivalent (distinct) irreducible

characters (characters of irreducible representations) is finite and this
number is to the number of conjugacy classes of G.

3.If 24506 5 G s , G are the distinct irreducible characters of G
with degrees 72, , 72, , 725 5......, 72, respectively, then,

W ni.nZ ... n} =O0(G). i 7,
divides O(G) for every i.

3. Restriction and Induction

Let 2 be a representation of G with character X and let H be a
subgroup of G. Then the restriction o, : H — GL(n,C)is clearly a
representation of H and we shall denote its character by ¢, (Note that
X is irreducible for G need not imply ¢, is irreducible for H).

Let & be a character of H. Then the induced character @° for G is
defined as

“
6°(g) —O(H)g "(xgx '), xEg,
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When &° (k) = &(h), hEH and

=0 otherwise
These two concepts play a crucial role in our graph construction.

2.8. Notation
The set of all distinct irreducible characters of G is denoted by /rr G and

the corresponding set for H is denoted by Irr H.(Apart from the trivial
character it is very rare that these two sets intersect.)

2.9. Theorem (Frobenius Reciprocity Formula)
Let H be a subgroup of G, let @€ rrH and let x<IG . Then

(XH,H)H =(X,GG )G .

2,10.Definition
Let H be normal subgroup of G and let & be any character of H. Then the

conjugate @° of & for any character of H is defined as
@' (h) =6(shs ™) . It is known that @° is irreducible if and only if &
is irreducible.

2.10. Theorem (Clifford)
Let H be a normal subgroup of G and let X€07G . Let & be an
irreducible constituent of X, and suppose =&, G,........ @ are

the distinct conjugates of & in G. Then Xy = 62 6, where
o
e=(6,y). That is, each & does occur and with the same
multiplicity in >¢g, .
4. Relative Character Graph I'(G,H)
4.1.Definition

Let H be an arbitrary subgroup of G. Then the Relative Character Graph
['(G,H) of G with respect to H has the elements of IrrG as vertices and two

distinct vertices (character) J¢Cand ¥ are adjacent if and only if ¢y
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and 7/, have atleast one element & of IrrH in common. This is

equivalent to saying that (),%’) ; > 0. Clearly I'(G,H) is a simple graph.

The following are simple observations.

L I'(G,H) is the null graph if and only if H=G.

II. IfKisasubgroup of G contained in H, then I'(G,H) is a subgraph of
I'(G,K).

. Where I'(G,(1)) is complete ((1) denotes the trivial subgroup), the
converse is not true. In fact, if H is a cyclic subgroup of order r
generated by x and if each /2, (x) has 1 as eigen value, where ©;
runs through the full set of irreducible representations of G, then
I'(G,H) is complete.

Our next aim is to prove a useful criterion for the connectivity of I'(G,H).

We can then see that the same method can be generalized to get the

connected components of I'(G,H).

First, we shall note that the adjacency stipulation in the definition of
I'(G,H) is equivalent to the following revised formulation.

It is a well-known fact that G acts on the set of right cosets of H in G,
denoted by G/H. This action is clearly transitive and this gives a
representation of G called the permutation representation of G acting on
G/H. It is known that the character of this representation is nothing but the

induced character lg , where 1., denotes the trivial character of H. (For
details, we refer to Isaac’s book [8].)Setlf, = ). Then we can

immediately prove the following

4.2.Proposition
Two vertices <Zand¥ are adjacent in I'(G,H) if and only if ¥ is a

constituent of g%

Proof: First note that g5 = (¢,,1,,)° = @1$ (by a property of induced
characters) = g% . Therefore, ¥ is an irreducible constituent of @ if
and only if (&, %)g =(¢5,9¥); = 0and hence (96,1,0)6 = 0 for
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some H-irreducible constituent &Gof &, . Hence (6,9, ), = 0(by
Frobenius reciprocity formula), which is the original adjacency criterion.

4.3.Lemma
An element @ of IrG (=vertex set of I'(G,H) )is joined to 15 by a path
of length s if and only if @7 is an irreducible constituent of >¢° .

Proof: We apply induction on s. This is clear for s = 0 and s = 1. Assume
that s >1 and the lemma holds for s-1. Suppose that @ is joined to 15

by a path of length s, but not of lengths-1. Let 15 =@, @4 ,...., @, =@
be this path. By inductive assumption, &2_, is an irreducible constituent
of oF*and since @2, and @ are adjacent, P is an irreducible
constituent of @2_, 2¢(by the above proposition), and hence clearly ¢

is an irreducible constituent of > .

Conversely, assume that @ is an irreducible constituent of ¢ . Then for
some irreducible constituent ¥ of 2™, @ is an irreducible constituent
of YX . Thus @ and ¥ are adjacent. But by the induction assumption,
Y isjoinedto 15 by a path of length s-1, and hence there is a path of
length s from @ tol . (We shall call this lemma as the path lemma
hence forth). This is only an algorithmic lemma which just works for all
s =< IrrG.

4.4.Definition
For any subgroup H of G,
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-1
Core s H = gggHg , which is the largest normal subgroup of G

contained in H. If we take Q@ = G/ H , then C G}b: {}]{ (wa=wfor

alweQ}

= ker X . (Kernel of the corresponding representation)

4.5.Proposition
If X;(G, H) is the connected component of I'(G,H) containing 15 ,

~Core .H= (N Kker
then i) G 4T (G H) ¢

iiy X; (G, H) is the set of irreducible characters of G with Kernel
containing Core ;H .

Proof:i) LetN= Core ;H .Since I, (G, N) isacomplete
subgraph containing 15 and I (G, H) is a subgraph of I, (G, V)

s H=s N ker¢
, it is clear that $T(G.H) Now, let A, A, 5eeeeeey A, be

the irreducible constituents of X. Then

N ker¢ C Nker A, =ker x = N Hence we have
¢T\(G.H) i=1

N= N ker¢
¢, (G.H)

i) Let I," (G, H) denote the set of all irreducible characters with
kernel containing N = Core H Thenby (i) I, (G, H) =
I‘l*(G, H) , since if &1 (G, H), then
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) = e e e »
kerp 2 ‘pa_l(r;’”) kerp=N ,whichimpliesp €T, (G, H) .

Consider X and ¥ as characters of G/N. Since X is faithful, Brauer-
Burnside theorem, @ is an irreducible constituent of >¢ for some

7 =1. Hence by the above lemma, @ is connected to 1 . That is
Q€I (G, H) .Hence X[ (G, H) =I,"(G, H) , which proves
the lemma.

4.6.Corollary
T, (G, H) =TI(G,H) if and only if Core ; H =(1).

In other words, the corollary says that I'(G,H) is connected if and only if
Core ; H =(1).

4.7.Corollary
If G is simple group and H is any proper subgroup, then I'(G,H) is
connected.

Proof: Just observe that Core ;. H =(1) since G is simple. We can

slightly modify lemma in the following manner, which gives explicitly all
the connected components of ['(G,H) . We omit the proof.

4.8.Theorem
Two vertices @ and ¥ lie in the same component if and only if @ is a

constituent of 24 ° .

5. The Tree Problem

From now on, we shall quickly develop the theory, sometimes omitting
details of the proofs, as the techniques and idea of the proofs are already
indicated through proofs of results that we have described so far. Before
going into the tree problem itself, we recall the concept of a “Frobenius

group”.

5.1.Definition
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G is a Frobenius group if there is a non-trivial subgroup H such that

H NH* =(1)forall xé H ,where H* = xHx . In this case there
is a distinguished normal subgroup N such that G is the semi direct product
of N and H. The subgraphs N and H are called the Frobenius Kernel and
Frobenius complement respectively. For example S3, As and Dz, the
Dihedral group of 2n elements when n is odd are Frobenius groups.

By the very nature of the subgroup H, the graphs I'(G,H)is connected if G
is a Frobenius group with complement H. In fact we can say much more.

5.2.Theorem
The graph I'(G,H)is connected, then it is a tree if and only if G is a

Frobenius group with complement H such that the Frobenius Kernel N is
the unique minimal elementary abelian normal Sylow p-subgroup of order
p™, for some prime p, and O(H) = p™-1. For details we refer to [6].

The graph I'(G,H)is connected, then it is a tree if and only if G is a
Frobenius group with complement H such that the Frobenius Kernel N is
the unique minimal elementary abelian normal Sylow p-subgroup of order
p™, for some prime p, and O(H) = p™-1. For details we refer to [6].

5.3.Example
The alternating graph A, is a semi direct product of N, the Klein 4-group

of order 4 and H, the cyclic group of order3. The graph I'(G,H) is the
following
lg
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However the dihedral group D, although Frobenius where the
complement H is cyclic group of 2 elements and the Kernel N is the cyclic

graph of 5 elements, but 2# 5-1 even though 2 divides 5-1 (according to
basic properties). The graph I'(Dyo,H) drawn below is clearly not a tree.

la

<=

In fact, if I'(G,H) is a tree then it must be isomorphic of the star X, ,, .
The central vertex A\ is very important, because the tree situation forces
the right action of G on G/H to be doubly transitive which is equivalent to

1§ =1, +A.

6. Triangulations

Triangulation problems, apart from its intrinsic interest in graph theory, are
nowadays widely used in “Global Positioning Systems” in communication
engineering.

Recall that a (connected) graph in which each cycle of length at
least four has a chord is called a wriangulated graph

The following development leading to our main theorem is generally based
on Parthasarathy’s book [12]. For a vertex v in an arbitrary graph I', N(v)
denotes the set of vertices adjacent with v and <N(v)> denotes the

subgraph induced by N(v).

6.1.Definition
A vertex v is simplicial if <N(v)> is a complete graph. If

O ={V,,V,,.... V,,} is an ordering of the vertices of I" such that 1 = i

= n, V, is a simplicial vertex of the induced subgraph
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F i = <Vi ’vi+l"“vn >, then O is called a perfect elimination
scheme for I'.

6.2.Theorem[12)
I is triangulated if and only if it has a perfect elimination scheme. We

state, without proof, our main.

6.3.Theorem
If I'(G,H) is connected for any pair (G,H) then I'(G,H) has a perfect

elimination scheme.(Note that we include the trees also here, under the
assumption that any tree is trivially triangulated). A typical example is the
following: Consider G = PSL(2,7), the quotient group by its center of the
special linear group SL(2,7) of 2x2 matrices with determinant 1 over a
field of 7 elements and let H = the subgroup S; sitting inside G. I'(G,H) is
drawn below:

lg

6.4.Remark
Not every finite graph can be isomorphic to I'(G,H) for some group G and

subgroup H. For instance, the graph

I X

231



Can not be I'(G,H) for any group G and subgroup H. This can be quickly
seen as follows: The edge 15 ¢ gives the information, hat 1, occurs in

@3, - Similarly 1, occursin >¢y . Hence by definition, ¢ and
X themselves are forced to be adjacent which is contradiction.

7. COMPLEMENTS

Finally let us consider the complement situation of I'(G,H) . We have the

following interesting result perhaps highlighting graph theoretically as to
why the subgroup H is called a ‘complement’ in a Frobenius group NH,

with Kernel N.

7.1.Theorem
G=NH is a semi direct product with N normal and H non-normal, then G

is Frobenius with Kernel N and complement H if and only if
ICG, H) ==X(G, ) . We record the following further facts on these
lines. It is known in graph theory that if a graph I is disconnected, then
Ais always connected. But when I" is connected T can be either
disconnected or connected. In this context the following theorem is very
interesting. For details of the proof we refer the reader to [6].

7.2.Theorem
Let n denote the number of vertices of I'(G,H) and q, the number of edges.

Suppose I'(G,H) is not a tree and the right action of G on G/H is doubly
transitive. If furtherg = n—1C,, then I (G,H)is connected. There is
one more interesting result giving a criterion for the connectedness of I
(G,H) using diameters.

7.3.Theorem
Let Core g H =(1)and let the right action of G on G/H is doubly

transitive. Then I (G,H)is connected if and only if the diameter of
I'(G,H)is atleast 3.

8.Conclusion

The graph B(G,H) of Chigira and Iyorif3] is different from I'(G,H).
Whereas B(G,H) is a bipartite graph, I'(G,H) has no such restrictions, even

232



though the (topological) property of connectedness criterion is the same in
both the graphs.

We have just opened up a way to construct finite graphs using
character theory of finite groups. Many interesting questions can be raised
and the answers to these questions will definitely enrich group theory,
character theory as well as graph theory.
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