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Abstract

The achromatic number for a graph G = (V, E) is the largest integer m such that there is a
partition of V into disjoint independent sets (¥,...,¥,,) such that for each pair of distinct sets
Vi, ¥, ViU V; is not an independent set in G. In this paper we present an O (1)-approximation
algorithm to determine the achromatic number of Circulant graphs G(n;%{1,2}), G(m:£{1,2,3}) .

Keywords: achromatic number, approximation algorithms, NP-completeness, Graph
algorithms.

1. Introduction

A proper coloring of a graph G = (¥, E) is an assignment of colors to the vertices of G such
that adjacent vertices are assigned different colors. A proper coloring of a graph G is said to be
complete if for every pair of colors i and j there are adjacent vertices # and v colored i and j,
respectively. The achromatic number of the graph G is the largest number m such that G has a
complete coloring with m colors. Equivalently there is a partition of V¥ into disjoint
independent sets (¥),...,V.,) such that for each pair of distinct sets V,, ¥, ¥; U V; is not an
independent set in G.

The chromatic number problem is to minimize the number of colors over all proper
colorings of a given graph. It is shown that the achromatic number is a maximinimal
counterpart of chromatic number, by defining a partition-related partial order on the set of all
proper colorings of G [20]. The pseudoachromatic number of a graph is the largest number of
colors in a (not necessarily proper) vertex coloring of the graph such that every pair of distinct
colors appears on the endpoints of some edge. Yegnanarayanan ([29] determined
pseudoachromatic number for graphs such as cycles, paths, wheels, certain complete
multipartite graphs, and for other classes of graphs. Hedetniemi[12] conjectured that the two
parameters achromatic number and pseudoachromatic number are equal for all trees which
was disproved later [6]. Small Communication Time task systems show that the achromatic
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number of the co-comparability graph is an upper bound on the minimum number of
processors [22].

2. An Overview of the Paper

The achromatic number was introduced by Harary, Hedetniemi and Prins [11,12]. The survey
articles by Hughes and MacGillivray [13] and Edwards{5] contain huge collection of
references of research papers related to achromatic problem.

Computing achromatic number of a general graph was proved to be NP-complete by
Yannakakis and Gavril{27).A simple proof of this fact appears in[10]. Farber et al. [7] show
that the problem is NP- hard on bipartite graphs. It was further proved that the achromatic
number problem remains NP- complete even for connected graphs which are both interval
graphs and cographs simultaneously [1]. Cairnie and Edwards [2], Manlove and McDiarmid
[20] show that the problem is NP- hard even on trees. Further it is polynomially solvable for
paths, cycles [5], complete bipartite graphs [19] and union of paths [21].

Since achromatic optimization problem is NP-hard, most of the research studies
related to achromatic problem focus on approximation algorithms. An approximation
algorithm for a problem, loosely speaking, is an algorithm that runs in polynomial time and
produces an “approximate solution” to the problem. We say that an algorithm is a-
approximation algorithm for a maximization problem if it always delivers a solution whose
value is at least a factor 1/a of the optimum. The parameter a is called the approximation ratio
(8, 25].

Let n denote the number of vertices in the input graph G and let y(G) be the
achromatic number of G. It is conjectured in [3] that the achromatic number on general graphs
admits an O(J/r) approximation. Chaudhary and Vishwanathan [4] realize an algorithm for
trees with a constant approximation ratio 7. For general graphs an algorithm that approximates
the achromatic number within ratio of O(n . log log »/ log n) is given in [18].

It is stated in [5] that “for achromatic numbers, there appear to be only a few results
on special graphs apart from those for paths and cycles”. Geller and Kronk[9] proved that there
is almost optimal coloring for families of paths and cycles [5,13]. This result was extended to
bounded trees [2]. Roichman, gives the achromatic number of hypercubes [24].

In this paper we present an O(1)-approximation algorithm to determine the
achromatic number of circulant graphs G(m;£({1,2}) and G(n;%(1,2,3}) .

3. Preliminaries
The following Lemma gives an upper bound for the achromatic number of a graph.

Lemma 1: For a graph G = (¥, E), if A is the maximum degree of a vertex in V,

w(G) < 1ﬂ]V]A ) +1.

Throughout the paper our strategy is as follows:
Identify an induced subgraph of the given graph such that a lower bound for its

achromatic number is computable.
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Middle vertex: > \/ < Middle vertex
“€——Bottom vertex

Figure 1: A Diamond-cut §

Definition 1: A diamond-cut is a cycle of length 4 with an additional edge joining the
diagonally opposite vertices of degree 2.We denote a diamond cut by S. The top, middle and

bottom vertices of S are as shown in figure 1.
We note that a diamond-cut is nothing but X, —e where X, is the complete graph

on 4 vertices.
Theorem 1: The achromatic number of disjoint union of ¢ number of diamond cuts is at least
148 - l_'.
Proof: Let S be a distinct and ¢ S denote ¢ disjoint copies of S. Let & be an integer such that
+
k(k2+ ) <t< (k + )k +2) . We first prove that when , - X¢+1 4 (1 5) 22k +2. We
2

partition t S into Ry U Ry U, U R, whereeach R, =i S, 1Si<k.

For 0< j<k—1, label R,_; as follows:

Label the middle vertices of alternate copies of S as 2j+1 and 2j+2 beginning from the first S in
R,_, . Label the top and bottom vertices of the left out copies of S in Ry_; as 2/+1 and 2j+2
respectively. The remaining 2(k — j) vertices in the S of R,_ , are labeled 27+3, 2j+4... 2kc+2

from left to right. See Figure 2. Andin R, _ ;» vertices labeled 2j+1 and 2/+2 are adjacent and
they in turn are adjacent to vertices labeled 2j+3..., 2k+2. Since none of the adjacent vertices in
R, _; receive the same label, the labeling is proper. Thus, the labeling induces an achromatic

labeling such that the achromatic number for @ Sisatleast 2k + 2.

(< (k+1)(k+2)

Now implies that

s 3N

2
ws) 22k+2 >1+81-1 2 Vi+8 —IJ.

We now extend our study to the subgraphs of G(n;£{1,2,3}).
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Figure 2: Achromatic labeling of 10S

&—Top vertex
Middle vertex—> &— Middic vertex
€——Bottom vertex
Figure 3: A diamond-crystal

We define the subgraph of G(m;+{1,2,3}) as a diamond-crystal. 1t is denoted by D. See Figure
3. A disjoint union of ¢ copies of D is denoted by ¢D.

Lemma 2:
Ifr + (r-1) + (r-1) + (r-2) + (r-2) +...4[r-(r-1)] +1 < t, where ¢ is the number of independent
D'sthenr < VE.
Proof: Let D be a distinct diamond-crystal and ¢D denote ¢ disjoint copies of D. We partition tD
into D¥ U D*' U_ U D' where each D* consists of Ik%Z] + lfii] + [?] + E] < t where t is
the number of copies of D’s.
Case (i): When k = 4r[k = Omod4]

r’<te

r<yt
Case (ii): When k = 4r + 1[k E 1mod4]

r<Vitat+1<+t
Case (iii): When k = 4r + 2[k = 2mod4]
r?+rst

rsqt
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Case (iv): When k = 4r + 3[k = 3mod4]
: r2+2rste
r<Wt
From all the above four cases, we conclude that if » + (»-1) + (r-1) + (r-2) + (»-2) +...

+[r-(r-1)] +1 < tthenr < VE.
We now proceed to give an algorithm to obtain a lower bound for the achromatic

number of independent D’s.

Theorem 2: The achromatic number of disjoint union of ¢ number of diamond-crystal is at
least 2k+2.

Proof: Let D be a distinct diamond-crystal and tD denote ¢ disjoint copies of D. Let k be an
integer. We prove that (tD) < 2k + 2.
1. Find maximum ¢ such that r < v&.
2. Partition tD into D*U D*' U, L D
For 0< j < k-1, label D' as follows:
Label the middle vertices of D*’ as 2j+1 and 2j+2 beginning from the first D in D*’. The
remaining 2(k - ;) vertices in D" are labeled 2j+3, 2/+4.... 2j+ [2(k-/) +2] from top to bottom.

See Figure 4.
I@ l@ @ @‘ 3$‘
L 0 J L J
o ot
1
: 1 IIZ |
D D? D!

Figure 4: Achromatic labeling of 9D

Proof of correctness:

In DY, vertices labeled 2j+1 and 2j+2 are adjacent and they in turn are adjacent to vertices
labeled 2j+3..., 2k+2. Since none of the adjacent vertices in D*/ receive the same label, the
labeling is proper. Thus, the labeling induces an achromatic labeling such that the achromatic

number is at least 2k + 2.
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4, Circulant graphs

A graph (or diagraph) whose adjacency matrix is circulant is called a circulant graph (or
digraph). Equivalently, a graph is circulant if its automorphism group contains a full-length
cycle. The undirected circulant networks arise in the context of Mesh Connected Computer

suited for parallel processing of data, such as the well-known ILLIAC type computers [27].
Definition 2: An undirected circulant graph, denoted by Gn; {1, 2 .. j}),

l<j< [gJ,n 2 3 is defined as a graph consisting of the vertex set ¥={0, 1 .., n— 1} and
theedgeset E= {(i,j) : [ — i|=s(mod n),s € {1,2...j}}.

Note 1: It is also clear that G(n; +1) is an undirected cycle.
Note 2: Circulant graph G(n’i{lz, l.EJ}J is a complete graph X, and therefore the
> gdogeecy 2

achromatic labeling of a complete graph X,, is n. See Figure 5.

Y
Vs vy 5 2
V4 Vz 2 A
V3

(@) Ks (b) Achromatic labeling of Ks
Figure 5: Circulant graph G(5; £(1,2}) is a complete graph

Achromatic number of Circulant graph G(n;%{1,2})

v
2 v,
vy Vs Vs
v, v,
V3

(@) ®)
Figure 6: (@) G(6; (1,2)) (b) G(6; £{1,2}) redrawn
For our convenience, we redraw the circulant graphs G(7;+{1,2}) in Figure 6(a) as shown in

Figure 6(b). Using the fact that diamond-cuts are induced subgraphs in circulant graphs, the
following results are obtained.
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Theorem 3: The circulant graph G(n;%{1,2}) has at least l%J number of disjoint copies of
K,-einG.
Proof: Every subgraph on 4 vertices induces a diamond-cut. Hence there are [—2 J independent

diamond-cuts in G(n;+{1,2}) . See Figure 7.
The following theorem is straight forward as the number of edges in G(n;%{1,2}) is 2n.

1£41+16n

Theorem 4: y(G(r;£{1.2)) S

Theorem 5: There is an O(1)- approximation algorithm to determine the achromatic number

of G(n;£{1,2}).

{a
Figure 7: Induced subgraph in red color for (a) G(10; :{1,2}) ®) G(11; +{1,2))

—H: “2"'16” and the lower

Proof: The expected achromatic number for G(m;+{1,2}) is
bound realized is { I+ ,,[1 J_IJ This proves the theorem.
6

The following theorem is straight forward as the number of edges £ in G(n;:t{l,2,3}) is 3n

and ezﬂ";;l).
Theorem 6: Let G(m*{1,2,3}) be circulant graphs of dimension n. Then

WG, s T2

Theorem 7: There is an O(1)- approximation algorithm to determine the achromatic number
of G(n;£{1,2,3}).
5. Conclusion

In this paper we present an O(1)-approximation algorithm to determine the achromatic number
of circulant graphs G(m;£{1,2}), G(n;£{1,2,3}) . Finding efficient approximation algorithms
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to determine achromatic number for toroid, Folded cubes and Augmented Cubes
interconnection networks is quite challenging.
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