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Abstract

The topological descriptor Wiener index named after the chemist Harold
Wiener is defined as half the sum of the distances between every pair of
vertices of a graph. A lot of research has been devoted to finding Wiener
index by brute force method. In this paper we compute the wiener index of
chemical structures such as sodium chloride and benzenoid without using
distance matrix.
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1 Introduction

Graph representation of molecular structures is widely used in computa-
tional chemistry. Trinajstic noted that the roots of chemical graph theory
may be found in the works by chemists of 18-19th centuries such as Higgins,
Kopp, Crum Brown. First chemical graphs for representing molecules were
used by them.

A graph G consists of a set of vertices V(G) and a set of edges E(G).
The vertices in G are connected by an edge if there exists an edge uv € E(G)
connecting the vertices u and v in G such that u,v € V(G). In chemical
graphs, the vertices of the graph correspond to the atoms of the molecule,
and the edges represent the chemical bonds. The number of vertices and
edges in a graph will be denoted by |V(G)| and |E(G)|, respectively.

To identify molecular structures of chemical compound, the molecular
graph invariants, called topological indices could be used tco. Topological
indices are designed basically by transforming a molecular graph into a
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number. The first use of a topological index was made in 1947 by the
chemist Harold Wiener. Wiener introduced the notion of path number
of a graph as the sum of distances between any two carbon atoms in the
molecules, in terms of carbon-carbon bonds. Wiener originally defined his
index (W) on trees and studied its use for correlations of physico-chemical
properties of alkanes, alcohols, amines and their analogous compounds.
Hosoya reformulated the wiener index in terms of distance between
vertices in an arbitrary graph. He defined W as the sum of distances
between all pairs of vertices of the graph under consideration, W(G) =

Zuvd(u, v), where d(u,v) is the number of edges in a minimum path

connecting the vertices u and v.

In the initial applications, the Wiener Index is employed to predict
physical parameters such as boiling points, heats of information, heats of
vaporization, molar volumes and molar refractions of alkanes [5, 21). The
study of Wiener index is one of the current areas of research in math-
ematical chemistry (see, for example [2]). Researchers made some at-
tempts to device a technique to find Wiener index of chemical compounds
[2,5,9, 10, 11, 13, 21]. They also used brute force method based on distance
matrix to compute the same [25].

In theoretical computer science, Weiner index is considered as one of the
basic descriptors of fixed interconnection networks because it provides the
average distance between any two nodes of the network. So far, most of the
researchers apply brute force method to compute Weiner index (8, 9, 10, 23].
Some researchers devised techniques to find Weiner index of certain fixed
interconnection networks [8, 15, 23]. Isometric embeddings of benezoid
graphs are surveyed in [18]. Their embeddings into hypercubes provide
methods for computing the Wiener index of partial cubes {18]. However,
these techniques cannot be applied to other networks. To our knowledge,
there is no unified technique to compute Wiener Index of graphs. This
motivated Bojan Mohar and Toniaz Pisanski to throw an open problem “is -
there an algorithm for general graphs that would calculate the Wiener index
without calculating the distance matrix?”. This open problem was posed in
1988 in Journal of Mathematical Chemistry [6). It remains unsolved until
now. Our objective of this paper is to find a mathematical technique to
compute the Wiener index without using the distance matrix, which also
generalizes the existing techniques.
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2 The Partition Lemma

The Wiener index WI(G) of a graph G is defined by

WI(G) =% > d(u,v),
u,veV(G)

where the summation extends over all possible pairs of distinct vertices u
and v of G.

We apply a partition strategy and use embedding as a tool to establish
an elegant technique to compute Wiener index of certain classes of graphs.
We begin with certain definitions of embedding parameters.

An embedding [3] of a guest graph G(V, E) into a host graph H(V, E) is
defined by an injective function f : V(G) — V(H) together with a mapping
Py which assigns to each edge (u,v) of G a path Pj(f(u), f(v)) between
f(v) and f(v)in H.

The dilation-sum Dy¢(G, H) of an embedding f of G into H is defined

Diem= Y dalf@), o),
u,vEE(G)

where dy(f(u), f(v)) is the length of the path Py(f(u), f(v)) in H.
Then the minimum dilation-sum of G into H is defined as

as

D(G, H) = winDy(G, H),

where the minimum is taken over all embeddings f of G into H.

The congestion of an embedding f of G into H is the maximum number
of edges of the guest graph that are embedded on any single edge of the
host graph. Let Cy(G, H(e)) denote the number of edges (u,v) of G such
that e is in the path Ps(f(u), f(v)). In other words,

C#(G, H(e)) = [{(u,v) € E(G) : e € Ps(f(u), f(v))}].
For S C E(H), the congestion on S is the sum of the congestions on the

edges in S. .
The congestion-sum C(G, H) of an embedding f of G into H is defined

> C/(G.H(e)).

e€B(H)

as
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Then the minimum congestion-sum of G into H is defined as

C(G,H) = mfinc’*',(a, H),

where the minimum is taken over all embeddings f of G into H.
For any embedding, the congestion-sum and the dilation-sum are one
and the same [17]. This motivated the following lemma.

Lemma 1 (Partition Lemma) [16/Let G be a graph of order n. Let
{S1,S2,...,Sp} be a partition of E(G) such that each S; is an edge cut
of G and the removal of edges of S; leaves G into 2 components G; and G}.
Also each S; satisfies the following conditions:

(i) For any two vertices u,v € Gi, a shortest path between « and v has
no edges in S;.

(ii) For any two vertices u,v € G}, a shortest path between u and v has
no edges in S;.

(iii) For any two vertices u € G; and v € G, a shortest path between u
and v has exactly one edge in S;.

Then WI(G) = i V(G (n—V(G:)l). B

i=1

3 Computing Wiener Index

In this section we describe an efficient method of computing Wiener Index
of chemical structures such as sodium chloride, honeycomb and benzenoid
graphs.

3.1 Sodium Chloride (Nacl)

In our day-to-day life, the common salt Nac! is used as an important preser-
vative because it retards the growth of microorganiasm. It also improves
the flavour of food items. Chlorine products are used in metal cleaners, pe-
per bleach, plastics and water treatment. They are also used in medicines.
A three dimensional mesh M(m,n, k) is defined as the cartesian product
P X P, X Pi. In a three dimensional mesh there are mnk number of ver-
tices and (2mn — m — n)k + (k — 1)mn number of edges. We find that the
unit cell representation of Sodium chloride (Nacl) is the same as the three
dimensional mesh M (3, 3,3). Infact in Figure 1 the hollow circles represent
Nat and solid circles represent Cl™ ions.
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Figure 1: Three dimensional mesh M (3,3, 3)

Let the vertex set of M(m,n,k) be the set V = {z1z923 : 0 < 21 <
m—1,0<z3 <n—1,0<z3 <k—1} and two vertices z = z,7223 and

3
y = y1y2y3 are linked by an edge if 2] |zs - 3| = 1.
=

Theorem 1 WI(M(m,n,k)) = 28 [nk(m?—1)+mk(n?—1)+mn(k2-1)].

Proof. For 1 <i < m—1, let A; be an edge cut of M (m n, k) such that
A; disconnects M(m,n, k) into two components X; and X; where V(X;) =
{z1zo23:0< 23 <i-1,0< 2, <n—-1,0< z3 < k-1}. For1<z<n 1,
let B; be an edge cut of M(m, n, k) such that B; disconnects M(m, n, k) into
two components Y; and Y; where V(Y;) = {z12223: 0 < z; <m—1,0 <
Ty <i -1, 0<a:3<k-1} For 1 <i < k-1, let C; be an edge cut of
M(m,n, k) such that C; disconnects M(m,n, k) into two components Z;
and Z; where V(Z;) = {z12223:0< 21 <m—1,0< 2, <n—-1,0< 23 <
i— 1} The edge cuts A;, B;, C; satisfy the conditions of the Partition

m—1 —1
Lemma. Thus WI(M(m,n,k)) = Y mni(mnk — mni) + "Z mki(mnk —
i=1 i=1

mki) + kil nki(mnk —nki) = ""‘" mek(nf(m?2 — 1) + mk(n2 — 1) + mn(k?® — 1)].
=1
|

3.2 A Benzenoid Structure

Honeycomb mesh can be thought of as a benzenoid structure and can be
built from hexagons in various ways. The simplest way to define them
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is to consider the portion of the hexagonal tessellation, which is inside a
given convex polygon. To maximize symmetry, honeycomb (hexagonal)
meshes can be built as follows: One hexagon is a honeycomb mesh of size
one, denoted HM,. See Figure 2(a). The edges of HM; are in 3 different
directions. If the perpendicular bisectors of these edges meet at point O,
then O is called the centre of the honeycomb mesh HM;. The honeycomb
mesh HM, of dimension two is obtained by adding six hexagons to the
boundary edges of HM,. See Figure 2(b). Inductively, honeycomb mesh
H M of dimension d is obtained from HMj_; by adding a layer of hexagons
around the boundary of HMy_;. Alternatively, the dimension d of HM,
is determined as the number of hexagons between the center and boundary
of HM, (both inclusive). The number of vertices and edges of HMy are
6d? and 9d? — 3d respectively [19). Further O is considered to be the centre

of HMjy, for any d.
(a) (b)

Figure 2: Honeycomb Mesh
Theorem 2 Let G be the honeycomb mesh HM, of dimension d. Then

d—1
WIG)=6 [Z#i (6d2 — p; )] + 34,

i=1
where p; = (d—i)(3d—1),0<i<d—1.

Proof. For convenience we shall introduce a coordinate system for the
honeycomb mesh. Let O be the centre of HMy. Through O draw 3 lines
perpendicular to the 3 edge directions and name them as «, 8 and « lines.
See Figure 3. The « line through O, denoted by ap, passes through 2d — 1
hexagons. Any line parallel to ap and passing through 2d — 1 — 7 hexagons
is denoted by oy, 1 < i < d — 1 if the hexagons are in the clockwise sense
about o and by a_;, 1 <1 < d—1 if the hexagons are in the anti-clockwise
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sense about ap. In the same way §; and 8_;, 0 < j < d -1, and -y, and
Y_ks 0 < k <d -1, are defined.

Figure 3: Axes of 3 - Dimensional Honeycomb HMj;

Let E., denote the set of edges of HM, cut by line . Then {Eq,, Eq,, ..,
Ead-l ) E—Oq ERRRD) E—ad..l ) Eﬂo ) EB, 1eeey Eﬂd_l ’ E—ﬁl PRI E—ﬂd_l ’ E’Yo’ E"yl PRI
E,, _ E—,.,E_y, |} is a partition of the edge set of HM  and each
of its members satisfies the conditions of the Partition Lemma. By the
symmetry of HMy, it is enough to apply the Partition Lemma to the edge
cuts Eqy, Eoy ) ...y Bay_, to compute the Wiener Index of HMjy. The sum of
congestions on Ey,, Eq,, ..., Eay_,, is given by p2 + p, (6d2 — py ) + po (6d2 —
Bo) + oo + prg_1(6d% — py_,), where p; = (d—i)(3d —i),0<i<d—1.
Hence

i=1

d—1
WI(G) =6 [Z#i(ﬁdz - l‘i):l + 3443,
where p; = (d—17)(8d-1),0<i<d-1. 1

4 Conclusion

In this paper an elegant technique has been evolved to compute the wiener
index of chemical structures such as sodium chloride and honeycomb with-
out using distance matrix.
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