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Abstract

The problem of determining the collaboration graph of co-authors
of Paul Erdos is a challenging task. Here we take up this problem
for the case of Rolf Nevanlinna Prize Winners. Even though the
number of prize winners as on date is 7, the collaboration graph has
20 vertices and 41 edges and possess several interesting properties.
In this paper we have obtained this graph and determined standard
graph parameters for the graph as well as its complement besides
probing its structural properties. Several new results were obtained.
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1 Introduction

The graphs considered in this paper are finite, simple and undirected. For
any undefined terms see [1] and [9]. For any graph G, we denote by V(G)
and E(G) the vertex set and the edge set of G respectively. The collabora-
tion graph G has as vertices all researchers (dead or alive) from all academic
disciplines with an edge joining vertices u and v if u and v have jointly pub-
lished a paper or book. The distance between two vertices u and v denoted
d(u,v), is the number of edges in the shortest path between u and v in
case if such a path exists and oo otherwise. Clearly d(u,u) = 0. We now
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consider the collaboration subgraph centered at Paul Erdos (1913-1996).
For a researcher v, the number d(Erdos,v) is called the Erdos number of
v. That is, Paul Erdos himself has Erdos number 0, and his coauthors have
Erdos number 1. People not having Erdos number 0 or 1 but who have
published with some one with Erdos number 1 have Erdos number 2, and
so on. Those who are not linked in this way to Paul Erdos have Erdos
number co. The collection of all individuals with a finite Erdos number
constitutes the Erdos component of G. 511 people have Erdos number 1,
and over 5000 have Erdos number 2. In the history of scholarly publishing
in Mathematics, no one has ever matched Paul Erdos’s number of collabo-
rators or papers (about 1500, almost 70% of which were joint works). Many
important people in academic areas other than mathematics proper-as di-
verse as physics, chemistry, crystallography, economics, finance, biology,
medicine, biophysics, genetics, metrology, astronomy, geology, aeronautical
engineering, electrical engineering, computer Science, linguistics, psychol-
ogy and philosophy do indeed have finite Erdos numbers. Also see [10] for
more details.

Problem: For the sake of brevity we denote the Rolf Nevanlinna Prize
Winners Collaboration Graph by G*. In this paper we consider the prob-
lem of 1) obtaining G*; 2) determining for G* and its complement certain
standard graph parameters; and 3) investigating the structural properties
of G*.

Construction of G*

G* is constructed as follows: G* has twenty vertices and forty one
edges. V(G*) = {u1,u2,...,u2} where u; = PaulErdos, uz = MariaMar-
garatKlawe, uz = SiemionFajtlowicz, u4 = RobertRobinson, us = George
Kunthar Lorentz, ug = EndreSzemeredi, u; = LaszloLovasz, ug = Nathan
Linial, u¢ = AlonNoga, 419 = BorisAronov, u;; = AndrejEhrenfeucht,
uyp = MarkJerrum, u;3 = AlokAggarwal, u;4 = RobertEndreTarjan, us
= LeslieValiant, u1s = A.A.Razborov, uy7 = AviWigderson, u;5 = Pe-
terW.Shor, 119 = MadhuSudan, uop = JonKleinberg. Note that the chrono-
logical order of prize winners are defined in order by u;, j = 14 to 20,
E(G*) = {e1,e2,...,e41} where e; = (u1,uz), e2 = (u1,u3), es = (uy,uq),
eq = (u1,us), es = (u1,us), €s = (u1,u7), 7 = (u1,us), es = (u1,us), €0 =
(u1,u10), €10 = (u2,us), €11 = (uz,w13), €12 = (u2,u14), €13 = (u2,u17),
e1s = (ug,u1s), €15 = (us,u11), e16 = (u4,u12), €17 = (us, uze), €18 =
(ue,ug), €19 = (us,u1s), €20 = (us,u17), €21 = (u7,us), €22 = (ur,ug),
e2s = (ur,u17), €2a = (ur,u1s), €5 = (us,un), €26 = (us,u13), €27 =
(ug,u17), e2s = (ug,u18), €20 = (ug,u10), €30 = (uo,u17), €31 = (uog, u1g9),
esa = (u10,u13), €33 = (U11,U1s), €34 = (u12,u15), €35 = (w13,u17),
ess = (u13,ws), es7 = (u13,u19), €38 = (u13,u20), €ag = (u16,%17),



eq = (u17,%19), €41 = (u1g,uz0). None of the seven RNPW’S have Er-
dos number 1. Out of the 511 direct co-authors of Paul Erdos, with Erdos
Number 1, only Nine members are connected by a path of length 1 or 2
with the RNPW'’S. Out of the seven RNPW'’S only five members namely
U14, U16, 17, Y18, U19 have Erdos number 2, the remaining members namely
U35, ugo have Erdos number 3. G* is shown in Figure 1.

Figure 1: G*

The method of obtaining the G* is described as follows:

Step 1: Click on the link:
http://www.ams.org/mathscinet/collaborationDistance.html
The result of step 1 is the following screen:
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Step 2: Enter the Author name and Enter another author name or click
on the use Erdos icon. For example, if the author name is: Jon.M.
Kleinberg and the another author name is: Paul Erdos then we obtain
the following screen:
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on the respective MR number.

Proceeding like this, one can obtain all the seven RNPW’S collaboration
details one by one. Since the number of RNPW’S is a small number, the
above procedure is recommended. It is vital to record a fact that, if there
is no co author relationship at all between two persons say X and Y, then
the result of our action of doing the Step 2 will be: “No path found”. We
have thoroughly checked all possible combinations. That is, first, we have
checked the co author relationship between any of the RNPW'’S with any
of the 9 applicable co-authors at level 1 with Erdos number 1. This action
leads to 7 x 9 = 63 combinations. Then we have looked for the same among
5 of the RNPW’S having Erdos Number 2. This leads to 5(5-1)/2 = 10
combinations. Next we repeated the same for 2 of the RNPW'’S at level 3
with Erdos no 3. This leads to 2x5+2x3+2(2-1)/2 = 17 combinations.
Also we have ascertained the coauthor relationship of the non RNPW’S at
level 2 having Erdos number 2 with any of the 5 RNPW'S at the same level
having Erdos number 2 and also between the non RNPW'’S. This leads to
(3 x 5) + 3(3 — 1)/2 = 18 combinations. A scrupulous implementation of
the above said procedure has led to the graph G* in Figure 1.

G* - its certain coloring parameters and their properties

Graph coloring is an important area of theoretical and practical research
in combinatorics. By a coloring we mean an assignment of colors to the
vertices or edges. More formally, a coloring of a graph G(V, E) is a function
f from V(G) or E(G) to the set of all natural numbers. Here we restrict
our attention to only vertex colorings. Hence, the range of the coloring is
only a finite subset; and if the graph is colored with k-colors, without loss
of generality, we can assume the range of the coloring to the {1,...,k}.
A coloring of a graph G is called proper if no two adjacent vertices are
assigned the same color. The minimum number of colors used in such a
coloring is what is called the chromatic number of G, denoted by x(G). A
coloring (not necessarily proper) of a graph G is called a pseudocomplete
coloring if for every pair of distinct colors, say, ¢,; there exists an edge
e = (u,v) € E(G) such that u is colored 7 and v is colored j. The maximum
number of colors used in a pseudocomplete coloring of a graph G is called
the pseudoachromatic number, %*(G). The maximum number of colors
used in a proper complete coloring of a graph G is the achromatic number,
%(G). (Note that the chromatic number of G is the minimum of colors
used in a proper pseudocomplete coloring of G). Further it is easy to see
that x(G) < ¥(G) < ¥*(G).

Proposition 1 x(G*) < (W(G;)H)

Proof Look at G*. As {us, ug, u17, 19} constitutes the complete graph on
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four vertices as an induced subgraph of G*, we have x(G*) > 4. Now color
the vertices ug, uz, w19, 111, 12, U16, Y19 With color a; color the vertices us,
ug, Us, Ug, U, Y14, U1s, Ugo With color b; color the vertices u, 13, u17 with
color ¢; color the vertices ug, us with d. This gives raise to a chromatic 4-
coloring of G*. This implies that x(G*) < 4. Hence x(G*) = 4. Further, it
is easy to check that G* contains no K3, the complete graph on 5 vertices as
an induced subgraph. Therefore w(G*) = 4; As 4 = x(G*) <10 = (*}1),
the proposition follows. O

We know that if a graph G does not contain 2K, as an induced subgraph

then x(G) < (“’(Gz)"'l).

Proposition 2 It is not necessary that a graph G satisfying the inequality
x(G) < (“’(Gz)“) should not contain 2K, as an induced subgraph.

Proof Clearly (u;,u9) and (u13,ug0) constitutes 2K3 as an induced sub-
graph of G*. The result now follows from Proposition 1. a

Proposition 83 G* contains no K,, as an induced subgraph for 5 <m <
10.

Proof As G* contains no i vertices with deg(v) > j, v € V(G*) for

7<i<10and 6 < j <9, K,, cannot be an induced subgraph for
7 < m < 10. Next we observe that Yv € V(G*) there are 7 possible
combinations na‘mely (uh U2, U7, Us, U, u13); (U]_, ugz, u7, us, u97u17);
(u1,u2, uz, ug, u13, u17); (1, Uz, Uz, Ug, 13, Un7); (U1, U2, Us, Uy, U13, U17);

(ul, U7, Us, U9, U13, u17); ('ug, U7, U, U9, U13, u17) which can contribute a Kg
as an induced subgraph of G*. But as (ug,u17) € E(G*) the combinations
first to fourth and seventh and as (ug, u13) € E(G*), the combinations fifth
and sixth all cannot give rise to a K in G*. So Kg cannot be an induced
subgraph of G*. Finally when m = 5, there are () = 252 combinations
to be examined. We leave it is an exercise for the readers to rule out each
possibility and hence the proof is complete. O

Proposition 4 ¢*(G*) > 8.

Proof It is enough to exhibit an achromatic 8-coloring for G*. Suppose
that (i) denote the i-th color class. We include the vertices of G* appropri-
ately into the color classes as follows. Let {(1) = {u14,%10), {(2) = {u17},
¢(3) = {us,uo}, ¢(4) = {us,u16}, {(5) = {us,u1s,u20,u10,u7}, ¢(6) =
{u1,u11,u13}, C(7) = {u4,u6,'u.18}, C(S) = {‘U.Q,ulz}. Then one can check
that this coloring is both proper and pseudocomplete. So ¥*(G*) > 8.
Finally as ¥*(G*) > ¥(G"*) the proof is complete. O

Proposition 5 9 < x(G*) < 17, where G* denotes the complement of G*.



Proof As no two of the vertices us, uq, us, ug, us, %10, ¥14, ¥15 and ugg are
adjacent in G*, they are all adjacent pairwise in G* and hence Ky will be
an induced subgraph of G*. This implies that x(G*) > 9. To obtain the
upper bound we appeal to the famous Nordhaus and Gaddum [14]. It says
If G is a graph of order p, then 1) [2,/5| < x(G) + x(G) < p+1 and 2)

P<x(@x@) < | (5)*]. O
Theorem 6 16 < ¥*(G*) + ¢*(G*) < 27.

Proof Proposition 4 and Proposition 5 yields the lower bound for ¢*(G*)+
¥*(G*). To see the upper bound we make use of Gupta’s inequality of
[8]. He proved that for any graph G of order p, ¥(G) + ¥(G) = 4p/3,
¥Y(G) + ¢*(G) = 4p/3 and ¥*(G) + ¥*(G) = 4p/3. We obtain the upper
bound in view of this. (|

G* and its chromatic polynomial

We know that any given graph G on n vertices can be properly colored
in many different ways using a sufficiently large number of colors. This
property of a graph is expressed elegantly by means of a polynomial. This
polynomial is called the chromatic polynomial of G and is defined as follows:
The value of the chromatic polynomial P,()) of a graph with n vertices
gives the number of ways of properly coloring the graph, using A or fewer
colors. Let r; be the different ways of properly coloring G using exactly i

colors. Since 7 colors can be chosen out of A colors in (':) different ways,

there are ): different ways of properly coloring G using exactly ¢ colors

out of A colors. Since 7 can be any positive integer from 1 to n (it is not

possible to use more than n colors on n vertices), the chromatic polynomial
n

A
is a sum of these terms; that is, Po(A) = zr,- ( ; ) Clearly 1, = 0, as
i=1
any graph with non empty edge set requires at least two colors for properly
coloring its vertices. Now Consider G*. r99 = 20! as G* can be properly
colored in 20! ways using 20 different colors. As x(G*) = 4, it is easy to
deduce that ro = r3 = 0. We leave it to the readers to determine r; for

4 <£1<19. Hence,

19
Theorem 7 The chromatic polynomial of G* is Py()\) = Zr.- (;\)

19 =4
+JJ(r -9

i=0

G* and its Partitions
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The Vertex-arboricity a(G) of a graph G is the fewest number of subsets
in a partition of the vertex set of G such that each subset induces an acyclic
subgraph. Clearly a(G) < x(G) for any graph G.

Proposition 8 a(G*) = 3.
Proof As a(G*) < x(G*) = 4, we have a(G*) < 4. Partition the vertex
3

set of G* as V(G) = U Vi with Vi = {u, ua, us, u4, us, us, uz, to, u11,
i=1

u12, U13, Y14, Y16, U16, Y19}, V2 = {us,us,u18, uz0} and V3 = {uy7}. Note

that each V;, 1 € 7 < 3 induces an acyclic subgraph. Now it is easy to see

the result. O

Proposition 9 2 < a(G*) <9.

Proof Mitchem [12] proved that for any G of order p, 1) /(p) < a(G) +
— - 2

a(G) < ”;—3; 2) £ <a(G)a(G) £ (s”ffl) . In view of this we get for our

G*, 5 = a(G*) + a(G*) < 12 and this inturn yields that 2 < a(G*) < 9. O

Observation 1 Lick and White [11] introduced the concept of “k-degenerate
graphs”. A graph G is k-degenerate if §(H) < k for every induced subgraph
H of G. The parameter px(G) of a graph is then defined as the minimum
number of subsets in a partition of the vertez set of G such that each subset
induces a k-degenerate graph. Clearly G* is a 1-degenerate graph.

G* and connectivity properties

A set A of vertices of a graph G is a separator if G — A has at least
two connected components. If A induces a clique in G then we call A
a clique separator. G* has a number of clique separators. For example,
{wr,u2}, {u1,us,us}, {usz,us, v13,u18} are all clique separators of different
cardinality. Further the vertices ui4 and ugo are simplicial vertices, as
the set of vertices adjacent to them respectively induces a clique in G*.
That is adj(u14) = {u2}, a K, the complete graph on one vertex and
adj(ugo) = {u13,u19}, a Ko, the complete graph on two vertices, where
adj(u) = {v : (u,v) € E(G)}. It is interesting to note that the simplicial
vertices need not be clique separators, as w(G*) = w(G* — u14).

Proposition 10 G* is not a chordal graph.

Proof We call a graph G, chordal, if every cycle in G of length at least
4 has a chord. G* is not a chordal graph, because, the set of vertices of
G*, namely, {ug, ug, u10, u13}, even though induces a Cy, has no chord edge
between the non-adjacent pair of vertices (us,u10), (49, %13). a
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Proposition 11 G* is not self complementary.

Proposition 12 £(G*) < #'(G*) = 6(G*), k(G*), k'(G*) are the vertez
and the edge connectivity of G*.

Observation 2 It is quite interesting to observe that a vertexr disjoint
clique decomposition of G* account for only fourteen edges out of a to-
tal of forty one edges which is nearly one third of ¢(G*). That is V(G) =
10

Uij where Hy = {uj,ug,us} & Ks; Hy = {ug,us,ui3, u1s} = Ky,
i=1

H3 = {us,un}; Hy = {ug,w12}; Hs = {us, w16}, He = {ur,u17}; Hy =
{u19,u20} all H; 2 K3, 3 <i < 7; Hg = {u10}, Ho = {u14}, Hio = {w1s}
oll H; 2 K,, 9 <t £10. By a cligue graph cl(G) of a given graph G,
we mean the graph, whose vertices are the vertez-disjoint cliques of G and
the edge set is constructed as follows: Introduce an edge between two clique
vertices, if any vertex of one clique is adjacent to any verter of the other
cliqgue. The clique graph cl(G*) of G* is given in Figure 2.

() () OO

Figure 2: cl(G*)

Observation 3 We call an open walk that includes all the edges of a graph
without retracing any edge a unicursal line or an open Euler line. A con-
nected graph that has a unicursal line will be called a unicursal graph. We
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know that if a connected graph G has ezactly 2k odd vertices then there erist
k edge-disjoint subgraphs such that they together contain all edges of G and
that each is a unicursal graph. Consider G*. It has 8 (= 2k) odd degree
vertices (with k = 4) uy, uz, us, g, 10, Y13, Y14, 16. Now add 4 edges to G*
between the vertex pairs (u1,u14), (u7,u13), (us,u10), (u9,16) to form a
new graph (G*). Since every vertex of (G*) is of even degree, (G*) consists
of an BEuler line p: Remove from p the 4 edges we just added. Then p will
be split into 4 walks, each of which is a unicursal line. The first removal
will leave a single unicursal line; the second removal will split that into two
unicursal lines; and each successive removal will split a unicursal line into
two unicursal lines, until there are 4 of them.

G*, a bounded fragmentation graph

We now proceed to check whether G* is a bounded fragmentation graph
or not? It is quite a recent interesting property introduced by Mohammad
Taghi Hajiaghayi and Mahdi Hajiaghayi in [13]. We know that connectivity
can be considered as a measure of the reliability of a network. Suppose
that a network N is represented by an undirected graph G, in which two
computers, namely nodes of the network, can communicate if and only if
there is a path in G from one to other. If G is k-connected, then after
removing at most k — 1 vertices of G, the rest of G (which has n —k +1
vertices) is still connected. This means that if at most k — 1 nodes of the
network fail, the rest of the nodes of the network can communicate with
each other. Now we define a bounded fragmentation graph. A graph G
is a (k, g(k))-bounded fragmentation graph if |[{(G[V ~ 8])| < |g(k)| for
every S C V(G) of size at most k, where g is a function of k. A graph G
is a totally g(k)-bounded fragmentation graph if it is a (k, g(k))-bounded
fragmentation graph for all 0 < k < n. Here ¢{(G) denote the number
of components of G, where each element of {(G) is a connected graph.
We remark that a bounded fragmentation can play a similar role in the
reliability of a network like connectivity. That is, if G is a (k, g(k))-bounded
fragmentation graph, then thereafter removing at most k vertices, we still
have at least one component which has §(n) vertices. The reason is that
after removing at most k vertices the rest of the nodes fall into at most a
constant number of connected components (g(k)) and thus one component
has at least §2(n) vertices. Thus, after the failure of at most k—1 nodes of N,
Q(n) nodes in the rest of N (and not necessarily n—k) still can communicate
with each other. So by grouping these facts, we conclude that bounded
fragmentation can be considered as a generalization of connectivity. It also
has another application in the reliability of a network. Suppose that we
need to repair the network N temporarily by adding several links between
the current nodes of the network (not by adding any new node because of
its high cost) when the number of failing nodes in the networks is at most .
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If G is a (k, g(k))-bounded fragmentation graph, then we can simply repair
the network by adding at most g(k) — 1 number of links, which is constant.
Here after removing the failure nodes, we find the connected components
of G in O(JV(G)|) time. Then we can connect these at most g(k) — 1 edges
among them. These two simultaneous properties of bounded fragmentation
graphs cause their corresponding networks to be more reliable and robust.

Proposition 13 G* is a 9k bounded fragmentation graph.

Proof Clearly the maximum degree of G, viz., A(G*) = 9, is a constant.
So after removing any k vertices, 0 < k < 20, the number of connected
components is at most g(k) = 9%. O

Proposition 14 G* is totally 9-bounded fragmentation graph.

Proof For any set S C V(G) of size k, 0 < k < 20, at least one vertex
from each connected component of G[V — ] is contained in any maximum
independent set. Since the size of the maximum independent set is 9, we
see that the number of connected components is bounded above by 9, as
well. So, G is totally 9-bounded fragmentation graph. O

Proposition 15 G* is a totally (k + 4)-bounded fragmentation graph.

Proof G* has 4 disjoint paths viz., ujusuyy, usujju1suzUsUIeU,
UsU16UsUIUL0, UTURUI7UIZULS. Now the removal of a vertex from a path
splits the path into at most two sub paths and thus at most two connected
components. Thus, removing any k vertices, 0 < k < 20, can add at
most & connected components. Thus we have at most (k + 4)-connected
components. O
We say that a vertex u of G covers an edge e if u is incident with e
(and conversely, e covers #). The minimum number of vertices (edges) cov-
ering all the edges (vertices) of G is called vertex- (edge) covering num-
ber of G and denoted by ao(G)[c1(G)]. Similarly a set A of vertices
[edges| of G is said to be independent if no edge [vertex] of G is inci-
dent with more than one vertex [edge] in A. The maximum cardinality
of an independent set of vertices [edges] of G is called vertex-[edge-] in-
dependence number of G and denoted by 8y(G)[81(G)]. For G*, B = 9,
and the vertices are: {ug,us,us,us,us, Uz, 10, U15,%19}. We know that
op + Bo = p where p = |V(G)| and hence 5y(G*) = 9, p = 20 implies
ap(G*) = 11, and the set of vertices which cover all the edges of G* are
{1, us, w9, u11, U12, U13, U14, U16, Y17, U18, U20}. Further we also have a re-
sult that a3 + B = p and hence we now calculate either of these parameters
for G* to find the other. Here again 5;(G*) = 9 and the set of independent
edges are {(u1, u10), (u2, u14), (3, u11), (U4, 212), (us, u16), (us, v17), (U7, Uo),
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(us,u13), (v19,u20)}. So 1(G*) = 11 and the set of edges which cover all
the vertices of G* are {(u1,u10), (u2,u14), (u3,un1), (us4,u12), (us,u16),
(us,ug), (ur,us), (u1s,u17), (u12,u18), (¥13,u18), (Y19, u20)}.

Proposition 18 G,(G*) < 12.

Proof We know from [11] that if G and G are two complementary graphs
of finite order p then 1) fo(G) + Bo(G) < p+ 1 and 2) Fo(G)Bo(G) <
]_E—J [L] In view of this we deduce that 5o(G*) < 12 as Bo(G*) = 9
and p = 20. O

Proposition 17 7 < 5,(G*) £ 10.

Proof We know from Chartrand and Schuster [4] that for a pair of comple-
mentary graphs G and G of finite order p, 1) |2| < B1(G) +51(G) < 2| §]
and 2) 0 < 81(G)B1(G) < |2)%. In view of this, we have 10 < $1(G*) +
B1(G*) < 20 and hence 1 < 5,(G*) < 11. But the results of Cockayne and

Lorimer [6] and Erdos and Schuster [7] imply, moreover, that I}%ZJ <
max{B1(G*)B1(G*)} < | &]. So, 7 < max{B:(G*)51(G")} < 10. o
Proposition 18 9 < o (G*) < 17.

Proof We know from Lasker and Aucrbach [15] that if G and G are com-
plementary graphs of order p then

1)2 I_MJ <0y(G)+ (@) < [#] -2

2) |22 |" < av(C)en(@) < lﬂﬂ‘_?l } [ﬁEﬁl:?)'l;

2 2

3) I- (p+1) J < min{e; ()1 (G)} < |.§2—”:;"—QJ; In view of this we have

20 < &1 (G*) + 1 (GF) < 28; 100 < a3 (G™)en (G*) < 196;
10 < min{ (G*),21(G*)} < 13. Hence 9 < 0y (G*) < 17. a

G*, its diameter, radius, eccentricity etc.

We know that in a graph G, the distance between two vertices u and v,
denoted by dg(v) is the length of the shortest path between v and v in G.
The distance of a vertex v in G is defined dg(v) = > dg(u,v). A vertex
of minimum distance is called a median vertex of G. The median is the
subgraph of G induced by its median vertices and is denoted by M (G). The
eccentricity of a vertex v in G denoted e(v) is the number rerta(acc:)dg(u, v).

u

The subgraph of G induced by the vertices of minimum eccentricity is
the center C(G) of G. The radius 7(G) is the minimum eccentricity of
the vertices, whereas the diam(G), the diameter of G is the maximum
eccentricity. A vertex v is called a peripheral vertex if e(v) = diam(G),
and the periphery is the set of all such vertices.

54



Proposition 19 M(G*) = K, where M(G*) is the median graph of G*.
Proposition 20 C(G*) = K,, where C(G*) is the center of G*.
Theorem 21 M(G*) = C(G*).

Proof It follows from Proposition 19 and Proposition 20.
Corollary 21.1 r(G*) = 3, where 7(G*) is the radius of G*.

Corollary 21.2 diam(G*) = 3, where diam(G*) is the diameter of G*.

Corollary 21.3 The periphery of G* is an empty set.

Proof As G* has no peripheral vertex the proof follows. a

Proposition 22 G* is the eztremal graph for the inequality
r(G) £ diam(G) < 2r(G).

Proof It follows from Corollary 21.1 and Corollary 21.2. O
Proposition 23 diam(G*) = r(G*) < 6.

Note Nestled between the minimum eccentricity and maximum eccentricity
is the average eccentricity. It was introduced by Buckley and Harary (3].
This new parameter has a practical relevance. For example, consider a
communications network modeled by a graph with vertices representing
the nodes of the network and edges representing the links between them.
One might want to minimize the average, taken over all the nodes in the
system, of the maximum time delay of a message emanating from it. This
is the average eccentricity of the corresponding graph.

Theorem 24 G* has a supergraph H* whose median subgraph is isomor-
phic to G*.

Deleting an edge from a graph may cause its diameter to increase or
stay the same, but it cannot decrease. A graph G is diameter-minimal if
for all the edges e € E(G), diam(G — e) > diam(G). Any edge that can
be removed from G without affecting the diameter is called superfluous.
Note that diameter-minimal graphs have no superfluous edges for, let G be
a diameter-minimal graph with diameter 2. Then every superfluous edge
e = (u,v) is contained in a triangle. Suppose not, then the removal of e
would make diam(G) > d(u,v) > 3.

Theorem 25 G* can be imbedded as an induced subgraph in a diameter-
minimal graph of diameter 2.
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G" and distance degree sequence
For a vertex v in a connected graph G, let n;(v) be the number of vertices
at distance i from v. The distance degree sequence of vertex v is dd,(v) =
(no(v),n1(v), ..., M) (v)). Clearly no(v) = 1 for all v; ny(v) = deg(v).
The length of the sequence dd,(v) is one more than the eccentricity of v;
Y- ni(v) = p. The distance degree sequence dd,(G) of a graph G consists
of sequences dd,(v) of its vertices, listed in numerical order. If a particular
dd, appears k times, we list it once with k as an exponent to indicate the
multiplicity. For G*, dds(u;) = (1,9, 8,2); dds(u2) = (1,6,9,4); dds(u1) =
(1,2,9,7,1); etc. Similarly one can have corresponding to the distance of
each vertex, a special distance sequence sds(G) of a connected graph G as
the list of its distance values arranged in non decreasing order. The distance
values need not be consecutive integers; There need not be two vertices
with maximum distance value: sds(G) is derivable from dds(G): For the
e(v)
sequence dds(v) = (no(v),n1(v),...,Ne()(v)), we have d(v) = Zin,-(’u).
i=1
For instance we have for G*, d(u;) = 1xn;(u1)+2xna(u21)+3xn3(uz;) =

31. A graph G is geodesic if every pair of vertices v and v are joined by a
unique path of length d(u,v). One can see 3] for more.

Proposition 26 G* is not a geodesic.

Proof We know that if every cycle of G is odd, then G is a geodesic. As
G* contains an even cycle: ujusugugu,, it is not geodesic. 0

We know that, if G is geodesic, then every cycle of G of smallest length
is odd. But the converse is not true. For example, every cycle of G* of
smallest length is 3, an odd number, but G* is not a geodesic.

Proposition 27 G* must contain a cycle with a diagonal.
Proposition 28 G* contains two cycles with no edges in common.

Proposition 29 G* contains two cycles with no vertices in common even
though it has only less then 3p — 5 edges.

Proof We know that a graph G with p > 6 vertices and 3p — 5 edges con-
tains two cycles with no vertices in common. It is not necessary that the
converse of the above stated result be true. Clearly G* has p = 20 vertices
and less than or equal to 3p — 5 edges and it has two vertex disjoint cycles

UgUgUIQUI3US and UgU1gUI7UG. O
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We know that if G is connected with diameter d, then 2d—3— [(@L’;ﬁl)" <
!@l . It is easy to check that G* satisfies the inequality as L.H.S = 8
with d = 6 and R.H.S = 15 with p = 20, ¢ = 41.

Proposition 30 g(G*) < 2 diam(G*) + 1, where g(G*) is the girth of G*.
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