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Abstract

Given a graph G = (V, E), aset W C V said to be a resolving set if for each
pair of distinct vertices u,v € V there is a vertex & in W such that d(u,z) #
d(v,z). The resolving number of G is the minimum cardinality of all resolving
sets. In this paper, a condition is imposed on resolving sets and a conditional
resolving parameter is studied for grid-based networks.

Keywords: resolving set, one-factor resolving set, augmented grid, extended

grid.

1 Introduction

An interconnection network can be modeled by a graph in which a proces-
sor is represented by a node, and a communication channel between two
nodes is represented by an edge between corresponding nodes. Various
topologies for interconnection networks have been proposed in the litera-
ture. The tree, grid (especially the 2-dimensional grid M, «,), hypercube,
k-ary n-cube, star graph, chordal rings, OTIS-Network and WK recur-
sive grid are examples of common interconnection network topologies. The
grid topology is the most dominant topology for today’s regular tile-based
NoCs(Networks on-Chips). It is well known that grid topology is very sim-
ple. It has low cost and consumes low power. Grid networks are highly
distributed networks which use special routing technology. In wireless and
mobile networks, grid networking has the obvious advantage that the soft-
ware adapts dynamically to changes in the structure or topology of the
network.

2 An Overview of the Paper
Let G = (V, E) be a connected undirected graph. A vertex w of G resolves
two vertices u and v of G if d(u,w) # d(v,w) where d(z,y) denotes the
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distance between vertices £ and y of G. A set W C V is said to be a
resolving set for G, if every pair of vertices in G is resolved by some vertex
in W. For an ordered set W = {w;,ws ... wg} of vertices in G and a
vertex v of G, the representation of v with respect to W is the k-tuple

T(U/W) = (d('v! wl),d(v’ 'U)2) d(v’ wk))

The definition of a resolving set implies that W resolves G if every vertex
has a distinct representation with respect to W. A resolving set W of
minimum cardinality is a minimum resolving set of G, and this cardinality
is called the resolving number of G, denoted by dim(G).

A basic problem in chemistry is to provide mathematical representation
for a set of chemical compounds in a way that gives distinct representations
to distinct compounds. The structure of a chemical compound is frequently
viewed as a set of functional groups arrayed on a substructure. As described
in [5], the structure is a labeled graph where the vertex and edge labels
specify the atom and bond types, respectively. Thus, a graph-theoretic
interpretation of this problem is to find a resolving set of the graph. There
are applications of resolving sets to problems of network discovery and
verification [1], pattern recognition and image processing, some of which
involve the use of hierarchical data structures [12] and arise in areas like coin
weighing problems [20], robot navigation [10}, strategies for the Mastermind
game 7], connected joins in graphs [18], geometrical routing protocols [11].

The first paper on the notion of a resolving set appeared as early as
1975 under the name ‘locating set’ [19]. Slater [19] introduced this idea to
determine uniquely the location of an intruder in a network. Harary and
Melter [8] and Khuller et al. {10] discovered this concept independently and
used the term metric basis. They called the resolving number as minimum
metric dimension. This concept was rediscovered by Chartrand et al. [5]
and also by Johnson [9] of the Pharmacia Company while attempting to
develop a capability of large datasets of chemical graphs.

Garey and Johnson [6] showed that determining the minimum metric
dimension (resolving number) of a graph is an NP-complete problem. It has
been proved that this problem is NP-hard [10] for general graphs. Manuel
et al. [13] have shown that the problem remains NP-complete for bipar-
tite graphs. This problem has been studied for trees, multi-dimensional
grids [10], Petersen graphs [2], torus networks (16|, Benes networks [13],
honeycomb networks [14], enhanced hypercubes {3], Illiac networks (4] and
X-trees [15)].

It is possible to define many resolving parameters for G by combining
the resolving property of G with a common graph-theoretic property such
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as being connected, independent or acyclic. Saenpholphat et al. [17] have
introduced connected resolving sets. A resolving set W of G is connected
if the subgraph G|[W] induced by W is a nontrivial connected subgraph of
G. The minimum cardinality of a connected resolving set W in a graph G
is called the connected resolving number cr(G). A connected resolving set
of cardinality ¢r(G) is called a cr-set of G. Since every connected resolving
set is a resolving set, dim(G) < cr(G) for all connected graphs G. Thus
1 < dim(G) < er(G) < n — 1, for every connected graph G of order n > 3.
A cr-set may have different graphical structures. This paper introduces a
resolving parameter of G when a resolving set of G is a 1-factor. In other
words, the graph G[W] induced by a resolving set W satisfies G[W| & tK,,
for some positive integer ¢. The minimum ¢ for which G[W] = tKj is called
the I-factor resolving number of G and is denoted by onef(G). By 1-factor,
we mean a l-regular graph.

‘We determine the 1-factor resolving number for some grid derived ar-
chitectures in the next section.

3 One-factor Resolving Number of Certain
Grid Derived Networks

3.1 Grid Networks

A straight forward generalization of the linear (1-D) array is the grid (2-
D) array. It is observed that the square grid has n? processors; diameter
2n — 2; vertex degree 2 or 4; almost symmetric. Grid network topology is
one of the key network architectures in which devices are connected with
many redundant interconnections between network nodes such as routers
and switches.

The diameter of a grid is smaller than the diameter of a linear array
with the same number of processors, but it is still high. A two-dimensional
rectangular grid graph is an m x n graph M(m, n) which is the Cartesian
product of path graphs on m and n vertices respectively. A vertex in the
ithrow and the j**column of an m x n grid is labelled by (%, 7). See Figure
1.

For any positive integer r, an r-neighborhood of a vertex v of a graph
G is defined by N,(v) = {u € V : d(u,v) =r}.

Lemma 1 Let G = M(m,n), where 4 < m < n. Then onef(G) > 1.

Proof. We claim that no two column vertices inducing an edge resolves G.
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Figure 1: Grid Network M(5,6)

Consider the vertices u = (¢, j) and v = (i + 1,5). Clearly these vertices
induce an edge. The vertices (i + 2,5) and (¢ + 1,5 + 1) have the same
representation with respect to u and v. Thisistruefor 1 <1< m-2,1<
j<n-1 Iu=(m-1,j) and v = (m, j), then the vertices (m —2, 5) and
(m — 1,7 + 1) have the same representation. Similarly for u = (¢,n) and
v=(i+1,n), 1 <i<m-1, the vertices (i,n — 1) and (i — 1,n) have the
same representation with respect to u and v. See Figure 2. The argument
is same for the row vertices inducing an edge. Thus onef(G) > 1.

(i'j) (m"zvj) ('— l. n)
i+1,j+1 -1,j+1 i,n-1
(.-+1,,)}L“ ) (m-l,j)}l AR "L—{(w
G+2,)) (mj) @+ 1.n)

Figure 2: Proof cases of Lemma 1

Theorem 1 Let G = M(m,n), where 4 < m <n. Then onef(G) = 2.
Proof. By Lemma 1, onef(G) > 1. We claim that the set
S = {(1’ 2)» (2s 2)a (m’ 2)$ (m, 3)}

resolves G.
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Figure 3: One-factor resolving set of G(4, 6)

Case 1 : Vertices in the same row.

Consider two vertices (3, 7), (3,!) with j < L.

If i = 1, then 4((1,7),(1,2)) # 4((1,1),(1,2)) except when j = 1 and
=3

Similarly, if i = m, then either d((m,j), (m,2)) # d((m,1),(m,2)) or
d((m, ), (m, 3)) # d((m, 1), (m, 3)). Thatis, if (m, j) and (m, l) are equidis-
tant from (m,2), then they are at unequal distances from (m,3) or vice

versa.
Let 1 <i < m. Then d((3,5),(1,2)) < 1 +d((3,1),(1,2)), 2 < j < L.

Case 2: Vertices in the same column.
Consider two vertices with (3, 7), (k,5) with i < k.
If j = 2, then (1, 2) resolves the vertices (i, 2), (k, 2).
If j = 1 or j > 3, the vertex (m, 3) resolves the vertices (%, j) and (k, 7).

Case 3 : Vertices in different row and different column.

Consider two vertices with (3,7), (k,!) with i # k, j # L.
In this case, for i < k we have

d((ia J)a (ls 2)) = d((k, l)a (11 2)) (1)
ifi+j = k+landi,jl>lori+j=kand1<71<2

ifi+! = k+jand1<£jl<20ri+j=kandjli>1
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Pairs of vertices (3, 5), (k, 1), i # k, j # { for which i, j, k,1 do not satisfy
conditions of equation 1 are resolved by (m,2). Similarly pairs of vertices
(2,9),(k, 1), i # k, j # | for which %,j,k,l do not satisfy conditions of
equation 2 are resolved by (1, 2).

Therefore (1,2) and (m,2) resolve all pairs (3,3), (k,!), leaving out
(2,1),(¢,3) for1 <i < m.

d((¢,1), (m,3)) # d((¢,3), (m,3)), by Case 1. Hence S resolves all pairs
of vertices in G. Since S induces 2K, the proof is complete.

Theorem 2 Let G = M(m, m) where m > 4. Then onef(G) = 2.

Proof is similar to that of Theorem 1.

3.2 Augmented Grid A(m,n)

An augmented grid AM(m,n) is a grid M(m,n) with additional edges
and these additional edges are obtained by joining (¢ + 1, ) and (¢,j + 1),
1<i<m-1,1<j<n-1. See Figure 4.

Figure 4: Augmented Grid AM(4,4)

Lemma 2 Let G = AM(m,m), where m > 4. Then onef(G) > 1.

As in the proof of Lemma 1, we can show that no two column or row
vertices inducing an edge resolves pairs of vertices of G.

Theorem 3 onef(AM(m,m)) =2 form > 4.

Proof. In view of Lemma 2, we exhibit a resolving set isomorphic to 2Ko.

Let
S= {(1’ 2): (2) 2)’ (m’ 2)’ (m’ 3)}
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Figure 5: One-factor resolving set in AM(5, 5)

Case 1: Vertices in the same row.

Let (3, ), (2,1) with § < be two vertices of AM(m,m). Then
d((i, ), (m, 2)) < 1+d((3,1), (m, 2)) for j < .

Case 2: Vertices in the same column.

Consider two vertices (%,5),(k,5),¢ # k. In this case either (1,2) or
(2,2) resolves (3, 7), and (k, 7).
Case 3: Vertices in different row and different column.

Let (3,7), (k,1),i # k,j # | be two vertices of AM (m,n). Here

d((m,2), (k1)) <1+d((m,3),(%,7)),% < k,j < l. Thus S resolves pairs
of vertices in AM(m, m). Since S is isomorphic to 2K3, onef(AM(m,m))

=2.
Similarly, we have the following result.

Theorem 4 onef(AM(m,n)) =2, where4d <m < n.

Proof is similar to that of Theorem 2.

3.3 Extended Grid EX(m,n)

Extended grid EX(m,n) is derived from the standard m x n grid M(m,n)
by making each 4-cycle into a complete graph. See Figure 6.

The vertices (1,2),(2,2),(m,n — 1) and (m — 1,n) are respectively de-
noted by a,b,¢c,d in EX(m,n).
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Figure 6: Extended Mesh EX(5,5)

Lemma 3 Let G = EX(m,m). Then

Ny (a) = ¢

N, (b) = 4

Ne, (¢) = <

4

\

4

\

{(1’ 1): (173)) (2a 1): (2) 2): (23 3)}’ =1

{(ry +1,i+1),0<i <7}V
{i+1,71+2),0<i<n},2<m<m-1

{(m,i),1<i<m}, n=m-—1

{(1,1),(1,2),(1,3),(2,1),(2,3),
(3’ 1): (3: 2)a (3’3)}; re=1

{(r2+2,9),1 <i<re+2}U

L {(i,'f‘g+2),1$i<1‘2+2}, 2<ra<m-1

([ {(m-1,m),(m—-1,m-1),(m—1,m-2),

(m,m—-2),((m,m)}, 3 =1

{(m-r3+im—-r3—1),(m—r3m—r3+14):0<i<r3},
2<rg<m—-2

{(lri):lsism}s"'3=m_l



( {(m_2)m'1)!(m-2’m)’(m—1’m"1)»
(m,m —1),((m,m)}, ra =1

Nr.(d)=J {(m—re+im—rs)y(m—ra~1,m—rs +i):0<i <1y},
257‘45777,—2

L {(5,1):1<i<m}, y=m -1
In what follows we denote N, (z) N Ny, (y) by Ny r,(z,y)
Theorem 5 onef(EX(m,m)) =2 (m 2 3).

a

Figure 7: One-factor resolving set of EX (5, 5)
Proof. Let § = {a,b,c,d}. First we define N, , (a,b) and Ny, (c,d).
( {(la 1)’ (113)7 (21 1)’ (27 3)}$ rp=re=1

{(r1+1,i4+1):0<¢ <}
Nyrl(a,b)=¢ 2<m<m—-1,ra<n

{G+1,m+2):0<9<n}
| 2Srmi<m-1, =7,
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( {(m—lim_l)s(m!m)}y rg=r4=1

{tm—i,m—rz3—-1):0<i<r3}
1<r3<m-2,r3<my
Nrgro(c,d) = ¢
{tm—r3,m—1):0<i<r3}
2<r3<m—2,r3>ry

[ {(m—r3,m—r3):2<r3<m—-1},r3=ry.

Now we need to prove that for any ry,72,73 and r4,| Ny r(a,b) N
Nygr(c,d) |£ 1.
For any ro < r; and 73 < 74,

Ny r,(a,0) NNy 7 (c,d) = {ri+1,m—-r3 —1)}.
Also for r¢ = r; and r3 > 14,
Ny r,(a,0) N Ny r (c,d) = {(m —ry,r +2)},
which implies that | Ny » (a,b) N Ny r, (c,d) |< 1. Thus S resolves pairs of
vertices in EX(m, m). Since S = 2K, onef(EX(m,m)) = 2. See Figure

7. Similarly we have the following result.

Theorem 6 Let G = EX(m,n). Then onef(G) > 2 where3 < m < n.

3.4 Enhanced Grid EN(m,n)

Enhanced grid EN(m,n) is obtained by placing a vertex in each bounded
face of an m X n grid and joining it to the corner vertices of the face.

Theorem 7 onef(EN(m,n))=2,3<m<n.

The proof is omitted.

4 Conclusion

In this paper, we have determined the resolving parameter, namely one-
factor resolving number, for the grid based architectures. This parameter
for other architectures are under investigation.
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Figure 8: Enhanced Mesh EN(5, 6)
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