Application of Array-token Petri nets in generating
English Alphabetic Letters

P. Usha', Beulah Immanuel %, R Sattanathan®
lDepat’tment of Mathematics, D.G.Vaishnav College,
Chennai - 600106.

?Department of Mathematics, Women’s Christian College,
Chennai - 600006.

*Department of Mathematics, D.G.Vaishnav College,
Chennai - 600106.

'ushaprab@yahoo.co.in

?peulah.immanuel @ gmail.com

rsattanathan @ gmail.com

Abstract: String-token Petri net which is a variation of coloured Petri net has
been introduced in [1] by requiring the tokens to be labeled by strings.
Languages in regular and linear families which are two basic classes in the
Chomsky hierarchy are generated by these Petri nets [2). An extension called
array - token Petri net, introduced in [5] by labeling tokens by arrays, generates
picture languages. Properties related to generative power of array-token Petri net
are considered in [3]. In this paper, application of array-token Petri net to
generate English alphabetic letters treated as rectangular arrays is examined.

Keywords: Petri net, string-token Petri net, array-token Petri net, picture array
language, 2D matrix grammar.

1. Introduction

Petri net introduced by Carl Adam Petri in 1962 has served as a basic model of
systems with concurrency and graphically depicts the structure of a distributed
system as a directed bipartite graph. As such, a Petri net has place nodes,
transition nodes and directed arcs connecting places with transitions but there are
no arcs between places and no arcs between transitions. The place from which an
arc enters a transition is called the input place of the transition; the place to
which an arc enters from a transition is called the output place of the transition.
Places may contain any number of tokens. A distribution of tokens over the
places of a net is called a marking. Transitions act on input tokens by a process
known as firing. A transition is enabled if it can fire, i.c., there are tokens in
every input place of the transition and when a transition fires, tokens are
removed from its input places and added at all of the output places of the

transition [6].
A coloured Petri net (CPN) has the net structure of a Petri net, and colours are

associated with places, transitions and tokens, A transition can fire with respect
to each of its colours [4]. A different kind of CPN, called string-token Petri net is

JCMCC 79 (2011), pp. 91-98

inroduced in [1] by labeling the tokens with strings of symbols and the
transitions with evolution rules. Firing of a transition removes the token with a
string label from the input place and deposits it in the output places of the
transition after performing on the string the evolution rule indicated at the
transition. This model is examined in [2] for generating regular and linear
languages of the Chomsky hierarchy in the study of formal languages.

Syntactic methods of generation and recognition of patterns and pictures have
been developed for many years by researchers with different motivations and
have been applied in practical problems such as character recognition, two-
dimensional mathematical symbols, 3D object recognition and many others.
Several two-dimensional grammars which constitute one such area of syntactic
methods have been proposed and studied [7]. In particular the 2D matrix
grammar introduced by Siromoney et al is a widely investigated class with a
number of theoretical as well as application oriented studies having been done
[91.

On the other hand, an extension of the string-token Petri net called array- token
Petri net is introduced in [5] by labeling tokens by arrays and is used to generate
picture languages. It has been shown in [3] that the class of languages generated
by array-token Petri nets intersects certain classes of picture languages generated
by 2D matrix grammars [3].

In this paper, we consider an application of array-token Petri net by generating
English alphabetic letters treated as digitized rectangular arrays.

2. Basic notions
The notions of 2D matrix grammar [7, 9] and Array-token Petri nets [5] are

recalled.

Definition 2.1

A 2D matrix grammar is a 2-tuple (G,, G;) where G; = (H,,1;,P,,S) is a regular,
CF or CS grammar; H, is a finite set of horizontal non-terminals; I, = { §,,S,,...,
Sy}, a finite set of intermediates, H;NI; =¢; P, is a finite set of production rules

called horizontal production rules; S is the start symbol, SeH;; G; = (G,
Gas,...,Gn) where Gy = (Vy;,T,P;,S), 1 < i <k are regular grammars; Vy; is a
finite set of vertical non terminals, VNVy; =¢@,i#j; T is a finite set of
terminals; Py; is a finite set of right-linear production rules of the form X—aY or
X—a where X,YeVy,a € T, SieVy is the start symbol of G;.G is a regular,
context-free, context sensitive 2D matrix grammar if G, is regular, context-free,
context sensitive respectively.

The set L(G) of all matrices generated by G consists of all mxn arrays [a;] such
that 1< i< m, lSj <n and S= *Glsil Siz s Smﬁ *(32 [a;j].

Informally described a derivation in a 2D matrix grammar has two phases. In the
first phase a string S of intermediates is generated. In the second phase all
symbols of S are rewritten in parallel in the vertical direction by rules of the
form X—aY or derivation is terminated by rewriting in the vertical direction all
symbols by rules of the form X—a to yield a rectangular picture array.

92

We denote the picture language classes of regular, CF, CS, 2D Matrix grammars
by RML, CFML, CSML respectively.

Definition 2.2

An Array-token Petri net (ATPN) is a 6-tuple N = (P, T, C, A, R, Mp), where (i)
P is a set of places; (ii) T is a set of transitions; (iii) C is set of symbols (colours)
and C,y is the set of all rectangular arrays over this colour set C, that are
associated with the tokens; (iv) A < (PXT) U (T X P) is a set of arcs; (v)
R(t) is the set of evolution rules associated with a transition t; (vi) My, the initial
marking, is a function defined on P such that, for peP, My(p)e[Caylus. It is
further assumed that there are no isolated places/transitions.

Definition 2.3
An evolution rule over V,y, where V an alphabet, is one of the following: (i)

identity , which keeps the array unaltered; (ii) column insertion A— a (I/r,
according as it is on left or right); (iii) row insertion 21— a (#/d according as it is
up or down); (iv) column deletion a— A (I/r, according as it is on left or right);
(v) row deletion a—A (u/d according as it is up or down); (vi) substitution a— b
where g, be V and A is the empty word.

The following subnets illustrate how column insertion rules are applied on the
left and right of an array A respectively. The rule A— a(!), inserts a column of a’s
to the left of the array A (Fig. 1). The rule 1— a(r), inserts a column of a’s to the
right of the array A (Fig. 2).

A= a(l) Pi pi A= a(r) p;
O BHD
A rI
4 h
Fig. 1 Fig. 2

Similarly, subnets to apply row insertion rules are formed. Replacing insertion
by deletion or substitution rules, subnets to apply these rules are formed.

Definition 2.4

A language ATPNL is an L-type ATPN language if there exists a ATPN N= (P,
T, C, R, M) and a set of final places F such that L = {w /weM(p)eM is a
reachable marking of N, peF}.

In other words, L-type ATPN language is defined in terms of strings
corresponding to some reachable markings in a specified set of final places F,
where L is a set of all strings generated in the places for all reachable markings.

We state two results that give a comparison of ATPNL with the 2D matrix
languages.

93

Theorem 2.1[5]
(i) The class of RML intersects the class of ATPNL (ii) The class of strict CFML
intersects the class of ATPNL.

~ Theorem 2.2[3]

There exists an ATPNL that cannot be generated by any CFMG and hence by
any RMG.
Proof[3): The theorem is a consequence of the following observation: (i) The
ATPN generated by A, (Fig. 3) consisting of ‘H’ (Fig. 4) shaped arrays of 2m+1
rows and n+2 columns, if t, fires n times, t; and t; fire m times (equal number of
times by construction). It is known that ‘H’ type arrays [9] to be not a CFML and
hence not a RML.

it A= X(®
A X() A > X(1)
t4| p3 t5 p4
t: 123
)\—)'(d))\—)0(0) Xeo o o0 000X
x e e o o o o o X
P2 X e o o o o o o x
X e o o o o o o X
Fig. 3: An ATPN A, §XXXXXXX§
X ¢ o o o o o o x
Xe o ¢ o ¢ e X
X e o o o o o o x

Fig. 4: ‘H’ shaped array
3. Generation of English Alphabetic Letters by Array-token Petri Nets

In this paper, we consider the case where ‘F’ consists of only one final place p;.
Some L-type languages generated by ATPNs are character type languages as
seen in the following examples. We can get the alphabets in the following
examples, only by firing the transitions in the order t;, t;, t3, ts, ...

The digitized versions of letters of the English alphabet embedded in a
rectangular array background of dots (treated as blanks) are considered and
array-token Petri-nets generating these are given.

Generation of Letters B, E, F
The ATPN A, (Fig.5) generates the picture language consisting of ‘B’ (Fig.6)

shaped array.

Fig. 5: An ATPN A,

XXXXXXXXXX
.x. * . L] L] L[] L] x
.X. L] * L] L] L] . x
X o o o o 0o 0o o X
XXX XXXXX X
.X‘ L] L] L] L . . x
.X. L] L] L] L] * . x
eX o o o o 0o o o X
XXX XXXXXXX
Fig. 6: ‘B’ shaped array

The ATPN A, generates, ‘B’ shaped array only when t; and t; fire equal number
of times and if t; fires n times, t, and t; fire m times each, the generated ‘B’
shaped array (Fig.6) consists of 2m+3 rows and n+3 columns. If we (i) delete
from ATPN A, rule tg (A —X(r)), we can generate letter ‘E’ (ii) delete t3 and t;
(A —X(d)), we can generate ‘F’ (iii) replace X by ¢ in p;, we can generate ‘D’.

Generation of Letters L, C, O, U
The ATPN A; (Fig. 7) generates the picture language consisting of ‘L’ (Fig. 8)

shaped array.

4 A —(r) X e o o o ¢ o o
X e o o o o o o

X e o o o ¢ o o

P X e e e o ° o o
X e o o o o o o

ty § e e e o o o o

XXXXXXXX

—(u)
Fig. 8: ‘L’ shaped array

Fig. 7: An ATPN A,

95

In ATPN A;, if t; and t, fire m and n times respectively, then the generated ‘L’
shaped array (Fig.8) consists of m+1 rows and n+1 columns, and if we (i)
inserting the rule L —X(u) as t5, we obtain ‘C’ (ii) inserting A —X(u) as tsand A
—X(r) as ts, we obtain ‘O’. (iii) inserting A —X(r) as ts, we obtain ‘U’,

Generation of Letters T, I
The ATPN A, (Fig.9) generates the picture language consisting of ‘T’ (Fig.10)
shaped array.

X

A — x(d)
4

A= x(u) P3

P X >l O :
4 .

t- t;
A= () A—>(r)

¢ o o o ¢ o X
e o o o o o X
X X X X X X X
e o o o o o X
e o o o o o X
L] L] L] . L] L] x

P2 'Fig. 10: ‘T’ shaped array

Fig. 9: An ATPN A,

The ATPN A, generates, ‘T’ shaped array, only when t; and t; fire equal number
of times. If t; fires m times, t, and t; fires n times(equal number of times by
construction), then ‘T’ shaped array in Fig. 10 consists of m+1 rows and 2n+1
columns, and if we inserting as ts, A —X(d), we get ‘T’.

Generation of Letter J
The ATPN As (Fig.11) generates the picture language consisting of ‘)’ (Fig.12)
shaped array.

XX XX XXX
L] L L] x L L] L]
L] . [] x [] L] .
L . L] X . L] .
* ° L] x L] L] L]
L] ® o X L L] L]
A>) Ao ® O X xxa

Fig. 12: ‘T’ shaped arra;
Fig. 11: An ATPN A; & pec aray

The ATPN A; generates, ‘J’ shaped array, only when t, and t, fire equal number
of times. If t; fires m times, t; and t; fire n times (equal number of times by

96

construction), then ‘J’ shaped array in Fig. 12 consists of m+2 rows and 2n+1
columns.

Generation of Letter P
The ATPN Ag (Fig. 13) generates the picture language consisting of ‘P’ (Fig. 14)

shaped array.

A= (u)

Fig. 13: An ATPN A4 «X o

.x.
<X X
.x.
eX o
oeX o
.x.
o X o
Fig. 14: ‘P’ shaped array

e o o o 0o X o o o X
o e o o o X o o o X
¢ o o e e o o X
cooochoox
.....x...x
tee e e XX XXX

The ATPN Ag generates, ‘P’ shaped array, only when the number of times t,
fires is less than that of t, firing. If t; fires n times, t; and t, fire m and r times (m
< 1) respectively, then ‘P’ shaped array in Fig. 14 consists of m+r+2 rows and

n+3 columns.

Generation of Letter G

The ATPN A, (Fig.15) generates the picture language consisting of ‘G’ (Fig.16)
shaped array.

A X @ AW

—=* () Ao

Fig. 15: An ATPN A,

XXX XXXXX

XX XXXX
[] L] ...X
e o o0 e X
e o oo e X
e o o0 X
XXX XXXXXXX
Fig. 16: ‘G’ shaped array

e o o o o o o o X

HKXXXXX XXX

In ATPN A, if t, fires n times, t; and t, fire m and r times respectively, and ts
fires t times, then ‘G’ shaped array in Fig. 16 consists m+r+3 rows and n+t+2

columns.

4. Conclusion

In this paper, we have generated some of the alphabetic letters in the form of
digitized rectangular arrays using array - token Petri nets. The generation of
other letters such as A, K, W, Z would require further effort to define rules to
generate diagonals of x’s. This question is to be addressed in future work.

5. References

[1] B. Immanuel, K. Rangarajan, K. G. Subramanian, “String-token Petri nets”,
Proceedings of the European Conference on Artificial Intelligence, One-day
Workshop on Symbolic Networks, at Valencia, Spain, 2004.

[2] B. Immanuel, K.G. Subramanian, A. Roslin Sagaya Mary, “Perri nets with
String-labeled Tokens”, Proceedings of the 2nd International Conference on
Cybemnetics and Information Technologies Systems and Applications, Orlando,
Florida, USA, 2005.

[3] B. Immanuel, K.G. Subramanian, P. Usha, “Array token Petri nets and
Character Generation”, Proceedings of National Conference on Computational
Mathematics and Soft Computing, Women’s Christian College, 2009.

[4] K. Jensen, “Coloured Petri nets”, Lecture Notes in Computer Science, 254
(248-299),1987.

[5] S. Kannamma, K. Rangarajan, D.G. Thomas, N.G. David, “Array token Petri
nets, Computing and Mathematical Modeling”, Narosa Publishing House, New
Delhi, India, (299-306), 2006.

[6] J. 1. Peterson, “Petri net Theory and The Modeling of systems”, Prentice
Hall, Englewood Cliffs, N.J., 1981.

(7] A. Rosenfeld and R. Siromoney, “Picture languages — a survey, languages
of design”, 1, (229-245), 1993.

[8] A. Salomaa, “Formal languages”, Academic Press, 1973.

[9] G. Siromoney, R. Siromoney and K. Krithivasan, “Abstract families of
matrices and picture languages”, Computer Graphics and Image Processing, 1,
(234-307), 1972.

98

