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Abstract

A kernel in a directed graph D(V, E) is a set S of vertices of D such
that no two vertices in S are adjacent and for every vertex u in V' \\ S there
is a vertex v in S, such that (u,v) is an arc of D. The problem of existence
of a kernel is N P-complete for a general digraph. In this paper we solve
the strong kernel problem of an oriented Biregular graphs in polynomial
time.

Keywords: oriented graph, kernel, strong kernel number, N P-complete,
strong orientation

1 Introduction

The concept of kernel is widespread and appears in diverse fields such as
logic, computational complexity, artificial intelligence, graph theory, game
theory, combinatorics and coding theory [3, 4]. Efficient routing among a
set of mobile hosts is one of the most important functions in ad hoc wireless
networks. Dominating-set-based routing to networks with unidirectional
links is proposed in [1, 9]. A few years ago a new interest for these studies
arose due to their applications in finite model theory. Indeed variants of
kernel are the best properties to provide counter examples of 0 — 1 laws in
fragments of monadic second order logic [8].

A kernel [6] in a directed graph D(V, E) is a set S of vertices of D such
that no two vertices in S are adjacent and for every vertex u in V\ §
there is a vertex v in S, such that (u,v) is an arc of D. The minimum
cardinality of all possible kernels in a directed graph D is denoted by x(D)
and is called the kernel number.The concept of kernels in digraphs was
introduced in different ways [10, 15]. Von Neumann and Morgenstern [15]
were the first to introduce kernels when describing winning positions in 2
person games. They proved that any directed acyclic graph has a unique
kernel. Not every digraph has a kernel and if a digraph has a kernel, this
kernel is not necessarily unique. All odd length directed cycles and most
tourriaments have no kernels [3, 4]. If D is finite, the decision problem of
the existence of a kernel is NP-complete for a general digraph [5, 14], and
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Figure 1: (2): v; = 2;(b): Kernel number =3

for a planar digraph with indegrees < 2, outdegrees < 2 and degrees < 3
[7]. 1t is further known that a finite digraph all of whose cycles have even
length has a kernel {12], and that the question of the number of kernels is
NP-complete even for this restricted class of digraphs [13].

In this paper we view the kernel problem from a different perspective.
In the literature, only the existence of kernel of a digraph G and its ap-
plications are extensively studied. Our aim in this paper is to investigate
all strong orientations of a biregular graph G and to determine the strong
kernel number of G. This number is different from the independent dom-
ination number +; for undirected graphs where v; is the cardinality of a
minimum independent dominating set [2]. For the graph in Figure 1 (a),
I' = {3,4} is an independent dominating set. Thus v; = 2 where as it is
easy to verify that the kernel number is 3.

An orientation of an undirected graph G is an assignment of exactly one
direction to each of the edges of G. There are 2!El orientations for G. An
orientation O of an undirected graph G is said to be strong if for any two
vertices z, y of G(O), there are both (z,y)-path and (y, z)-path in G(O)
[16).

Let G be an undirected graph. Let O-(G) denote all possible orienta-
tions of a graph G and O,(G) denote the set of all strong orientations of
G. For an orientation O € O, let G(O) denote the directed graph with
orientation O and whose underlying graph is G. The kernel number of
G(O) is denoted by x(G(0)).For convenience we write as x(0). We de-
fine the kernel number of G as follows.The kernel number of G is defined
as kz(G) = min {£(0) : O € Oz(G)} . Similarly we define the strong ker-
nel number of G as k,(G) = min {k(0) : O € O,(G)}. When there is no
ambiguity we refer to ;(G) as K,.

The strong kernel problem of an undirected graph G is to find a kernel K
of G(O) for some strong orientation O of G such that |[K| = k,. An optimal
lower bound for #,(G) when G is a regular graph has been obtained in [11).
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2 Kernel in Biregular Graphs

A graph G is said to be biregular if there exist integers r; and o such that
for every vertex v in G, degree of v is either 7; or rq.

Here we estimate the lower bound for the strong kernel number of cer-
tain biregular graphs. We also derive the strong kernel number for certain
biregular graphs.

2.1 Lower bound on «, for biregular graphs

The salient feature of this paper is the following result which enables us to
obtain a lower bound on #; for certain biregular graphs.

Lemma 1 Let n,k, 71 and ro be integers such that ry > 2rp and n > r1k.
Then for any t < k,t+ [(n —rit)/r2] 2 k+ [(n — r1k)/r2].

Proof. If ¢t = k, there is nothing to prove.
If t < k, then we claim that [(n —r1t)/r2] — [(n — i k)/r2] > k —t.

Now
7'1/7'2 >2 (1)

Case 1 (r2|(n —1t) and rg|(n — r1k)):

LHS =[(n-rit)/re] —[(n—11k)/r2]
= (n —rit)/r2 — (n —T1k)/r2
=ri(k—t)/rz
> k —t, by equation 1

Case 2 (r2{ (n —r1t) and ra|(n — r1k)):

LHS =[(n—-rit)/ro] —[(n—r1k)/r2]
=(n—-rt)fra+a—(n-rik)/re,0<a<1
=rk—t)/re+a
>k —t+ o, by equation 1
>k-t

Case 3 (r2|(n — rit) and ro { (n —r1k)):
Since r1/re 2 2, let ry/ro=1+z, 2> 1.

LHS =[(n—rit)/re] — [(n—rik)/r2]
= (n—t)/ra — [(n— k) /ra + B,0 < A< 1
=ri(k—t)/re—8
= (1+a)(k—1)-p
2(k-t)+p(z-1)
>k-t

Case 4 (r2{ (n —rit) and 7o { (n — 11k)):

101



LHS ={[(n—mrt)/rs] - [(n—r1k)/r2]
=(n—rit)/re +a—[(n—T11k)/r2 + B],
0<a<l,0<f8<1.

=ri(k—t)/re+a-p
Subcase 4.1 (a = §):
L HS =rk-t)/ro>k-t
Subcase 4.2 (a > f):
Herea—8>0
L.H.S. > ri(k—t)/ro whichis > k —¢.
Subcase 4.3 (a < 8):
Herea—8<0
Therefore L. H. S. =r1(k —t)/ra —7,0<y<1
As before let r1/ro =1+ z, z > 1. Thus
=(1+az)(k-t)—

LHS _ (1 +2)(k—1) —7

> (k=) +2(z— 1)
>k—t.
Thus we have the following Theorem.

Theorem 1 Let G be a graph on n vertices such that each vertex is of
degree either vy or ro and r1 > 2ry. Let k be the number of vertices of
degree r1, subject to the condition n > rk. Then k, > k+ [(n — r1k)/r2] .

Proof. For any strong orientation O of G, every vertex has at least one
indegree and at least one outdegree. Hence every vertex v in G of degree
r, has at most r; — 1 incoming edges in G(O). Suppose all the vertices of
degree 7, are in the kernel and dominate k(r; — 1) vertices in G(O), then
the kernel members for the remaining n—r1k vertices are to be determined.
Thus ks 2 k+ [(n —mk)/r2]. m

3 Strong Kernel Problem in Biregular Graphs

3.1 TUnion of two even cycles with one common vertex
It is easy to prove the following Lemma.

Lemma 2 Let G denote the union of two even cycles with a common ver-
texz. For n > 7, let the two cycles in G on n vertices be oriented in the
clockwise direction. Then G is strongly connected.

Theorem 2 Let G denote the union of two even cycles with a common
vertex. Let G have n vertices, n > 7. Then K, = (n —1)/2.
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Proof. Let C; and C; be the two even cycles on 2n; and 2ng vertices with
n = 2(n; + ng) — 1. Label the vertices of the two cycles as 1,2,...,2n; —
1,2n,,2n; + 1,...,2n1 + 2n2 — 1, both in the clockwise direction starting
with the common vertex v as 1. See Figure 2. Then K = {1,3,5,...,2n; —
1,2n; +2,...,2n; + 2np — 2} is a kernel of G and |K| =n; +ny — 1.
By Theorem 1, ks > 1+ [(2(n1 + n2) — 1 —4)/2]
=1+ [(2n1 + 2n2 — 5)/2]
>2n+np-—1
Therefore K, =n; +nz — 1
=il
=(n-1)/2. =

Figure 2: Encircled vertices form a kernel

3.2 Biregular Petersen Graphs

Definition 1 A generalized Petersen graph P(n,m),n>3,1<m < |[(n—
1)/2] consists of n spokes (ui,v;),1 < i < n and n inner edges (V;, Vi4m)
with indices taken modulo n. For convenience uy,us,...,U, are represented
by 1,2,...,n and v1,v2,...,v, byn+1,n4+2,...,2n respectively.

Here we consider Petersen graphs with m = 2 and call a generalized
Petersen graph P(n,2) simply a Petersen graph.

Remark 1 LetI'; denote the cycle induced by the vertices 1,2, ...,n. When
n is odd, let I's denote the cycle induced by the verticesn+1,n+2,...,2n.
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Figure 3: BP(13,2)

In this paper we give a variation of the definition of the Petersen graphs,
namely Biregular Petersen graphs.

Definition 2 Let P(n,2),n > 3 be a Petersen graph. Consider an arc
v of I'1 of length n — 2. Subdivide each edge of v with 2 vertices. Let
v be the verter of degree 2 in I'1\y. Attach one pendant edge at each of
the new vertices introduced in the edges of yv. These pendant edges are
called extended spokes. Attach 8 pendant edges at v. Let I'g be the cycle
passing through the pendant vertices so formed. The resultant graph is
called Biregular Petersen graph and it is denoted by BP(n,2).

Remark 2 Label the new vertices on the edge (¢,i+1) in vy as dn+(2i—5)
and 4n + (2i — 4),i = 1,2,3,...,n — 2. Label the vertices of 'y beginning
with the vertez adjacent to vertez labeled 4n — 3 in the clockwise direction
as2n+1,2n+2,...,2n + 2(n — 2) followed by 2n + (4n — 7),2n + (4n — 6)
and 2n + (4n — 5). See Figure 3.

Remark 3 For 1 < 4,5 < n, we call the oriented spoke (i,n +1) an
inward spoke and the oriented spoke (n+j,j) an outward spoke. For
1 <1i,j < 2n—4, we call the oriented extended spoke (2n +i,4n — 4 +1) an

inward extended spoke and the oriented extended spoke (4n — 4 + j,2n + 7)
an outward extended spoke.
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3.3 Orientation Algorithm

Input: BP(n,2),n > 3,n odd

Algorithm:

Step 1: Orient the edges of cycle I'g in the anticlockwise direction with
an inward extended spoke and an outward extended spoke.

Step 2: Orient the edges of cycle I'; in the clockwise direction with an
inward spoke and an outward spoke.

Step 3: Orient the edges of I'z in the clockwise direction.

Step 4: Orient the remaining spokes arbitrarily.

Output: BP(n,2) is a strong orientation.

Proof of correctness: Let & = (i,n +1) and €3 = (n + 3, 5) for some
1,3,1 <14,j < n be an inward spoke and an outward spoke respectively. Let
€ = (2n+i,4n~4+1) and & = (4n —4+5,2n + j) for some 4,5,1 <
i,7 < 2n — 4 be an inward extended spoke and an outward extended spoke
respectively. For u,v € V, we claim that there exist directed paths from u
to v and from v to u. If u,v lie on I'g, I'1, or I'y, then our claim is true since
T is oriented anticlockwise and I'; and I'; are oriented in the clockwise
direction.

Suppose u lies on [y and v lies on I';. The directed (u, 2n + )-path on
I in the anticlockwise direction followed by €3, followed by the directed
(4n — 4 + i, v)-path on I'; in the clockwise direction is a path from u to v.
In the same way we trace out a directed path from v to u. The directed
(v,4n—4+j)-path on I'; in the clockwise direction is followed by eg, followed
by the directed (2n + j,u)-path on I'g in the anticlockwise direction is a
path from v to u. See Figure 4.

Suppose u lies on I'p and v lies on I';. The directed (u, 2n + ¢)-path on
T in the anticlockwise direction followed by €3, followed by the directed
(4n —4+1,4)-path on I'; in the clockwise direction followed by er, followed
by the directed (n + i,v)-path on I'z in the clockwise direction is a path
from u to v. In the same way we trace out a directed path from v to u.
The directed (v,n + j)-path on I'; in the clockwise direction followed by
&3, followed by the directed (j,4n — 4 + j)-path on I'; in the clockwise
direction, followed by €z, followed by the directed (2n + j, u)-path on Iy in
the anticlockwise direction is a path from v to u. See Figure 5.

Similarly if u lies on I'; and v lies on I'y, there exists directed paths
from u to v and v to u. Thus G is strongly connected.

Based on the lower bound for the strong kernel problem, we obtain
an optimal solution for Biregular Petersen graphs. This is stated in the
following theorems.
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Figure 4: In BP(13,2),uonTgandvonTy; (1_,_11) an inward spoke, (26, 13)
an outward spoke, (34, 53) an inward extended spoke and (53, 31) an out-
ward extended spoke.

Figure 5: In BP(13,2),u on I'y and v on I'y
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Figure 6: Encircled vertices form a kernel

Theorem 3 Let G be BP(n,2),n > 3. Then £, =1+ [&271L].

Proof. Consider G(O) with O defined by the orientation algorithm. See
Figure 6. It is easy to check that K = {2,3,4,..,n—2,n,n+1,2n+1,2n+
3,...,2n+ (2n — 5),2n + (4n — 8)} form a kernel of G. m

Theorem 4 Let G be The strong kernel problem for BP(n,2),n > 3 is
polynomially solvable.

4 Conclusion

In this paper, we have determined the lower bound for the strong kernel
number for biregular graphs and also proved that the strong kernel problem
is polynomially solvable for union of two even cycles with one common
vertex and Biregular Petersen graphs. It would be interesting to identify
more biregular graphs for which the lower bound for %, is attained.
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