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Abstract. It is shown that the basis graphs of every family of circulants are character-
ized by their matching polynomials. Explicit formulas are also given for their matching
polynomials. From these results, the analogous formulas for the chromatic polynomials
of the complements of the basis graphs, are obtained. It is shown that a basis graph of
a family of circulants is chromatically unique if and only if it is connected. Also, some
interesting results of a computer investigation are discussed and conjectures are made.

1. Introduction.

The graphs considered here are finite and contain no loops and no multiple edges.
Let G be such a graph and p denote the number of nodes in G. Let G denote the
complement of G. A matching in G is a spanning subgraph of G whose compo-
nents are nodes and edges only. A k-matching is a matching with exactly & edges.
A defect-d matching is a matching with exactly d nodes. A perfect matching is a
defect-0 matching. The matching polynomial of G is the polynomial

M(Giw) =Yl u,
k

where a; is the number of k-matchings in G,w = (wy,w;), where w; and w,
are indeterminates associated with a node and an edge respectively, and the sum-
mation is taken over all integers k such that 0 < k < |p/2]. The notation |z|
means the greatest integer less than or equal to z. We refer the reader to Farrell
[4] for the basic properties of matching polynomials.

The chromatic polynomial of a graph G counts the number of proper colorings
of the nodes of G with ) colors, where ) is an indeterminate. A proper coloring
is a coloring in which adjacent nodes receive different colors. We will denote
the chromatic polyromial of G by P(G; X). Also throughout this paper we will
assume that P(G; \) is expanded in the falling factorial basis, that is,

P(G5X) = ) b,
k
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where (M) = A() — 1)(X —2)...() — k + 1) and the summation is taken over
all integers & such that 1 < k < p. We refer the reader to Read [11] for the basic
properties of chromatic polynomials.

The following definition is taken from Boesch and Tindell (1]). The circulant
graph Cp{a1,62,... ,ax) isagraph withpnodes where 0 < a1 < a2 < ... <@
< |p/2), and nodes ¢ + a1, i £ az,...,4% ap (mod p) are adjacent to node i
for each i, where 1 < ¢ < p. For the purposes of this paper, we will denote by B,
the circulant Cp(r).

It is clear from the definition, that the graphs B, (1 < r < |p/2]) are edge
disjoint. Also every circulant on p nodes can be formed by including the edges
of a unique subset of the set (By, Ba, ... ,By) where n= |p/2|. We therefore
refer to this set of circulants as the basis for all circulants on p nodes.

We say that a graph G is characterized by its matching polynomial if and
only if whenever M(G;w) = M(H;w), for a graph H, then G is isomorphic
to H. For brevity we will say that G is matching unique. The term chromatically
unique is analogously defined by using the chromatic polynomial instead of the
matching polynomial. Graphs G and H are called co-matching when M (Giw) =
M(H;w).

In this paper, we show that the basis graphs B1, Bz, ... , By for each positive
integer p, are matching unique. Also, we give explicit formulas for the matching
polynomials of the basis graphs. From these we deduce explicit formulas for the
chromatic polynomials of the complements of the basis graphs. Finally we give
the result of a computer investigation which seems to indicate that the family of
circulant graphs are rich in chromatically unique graphs. It appears that every
circulant graph is either matching unique or chromatically unique or both.

Let C, denote the cycle with p nodes. (Whenp = 1 or 2,wetake Cptobe a
node or an edge respectively. Cycles with more than two nodes are called proper
cycles). A graph consisting of components H, Ha, ..., H, will be denoted H{ U
Hy U...UHy.

2. Some preliminary results on circulants.

In [1] Boesch and Tindell remark that not all point-symmetric graphs are circu-
lants. However every point-symmetric graph with a prime number of nodes is a
circulant. They point out that the cube Q3 (= K2 x Ca, where z denotes the carte-
sian product (see Harary [10], p. 22)) is the smallest point-symmetric graph that
is not a circulant. Boesch and Tindell prove that the circulant Cp{a;, 62, ... , ax) is
connectedif andonly if gcd(ay, a2, .. ,ax,p) = 1. Thenotation ged(d; A2, ... ,ds)
means the greatest common divisor of the integers di,dz, ... , and d,. From this
connectivity result, it follows that if gcd(ar, a2, ... ,a¢,p) ¥ 1 then Cpla1, a2,
... ,ax) is not chromatically unique because of the following result in Chia [3].
Chia proved that if G has two blocks each containing at least 3 nodes then G is
not chromatically unique.
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A prism is the cartesian product of an edge (K, ) with a proper cycle (Cp, where
p > 3). Thus, K, x G, denotes a prism with 2 p nodes. When p is an odd integer,
K> x Gy is the circulant C;,(2, p). When p is an even integer, K, x Cp is nota
circulant because Cz,(2, p) is not connected.

3. Some preliminary results on matching polynomials.

The following lemma is Theorem 5 in [4]. It is easy to prove.

Lemma 1. (The Component Theorem)LetG be a graph withcomponents G, , G,
... ,Gk. Then
M(G;,w) = ILM(G;;w).

The following lemma can be easily deduced from the definition of the matching
polynomial.
Lemma 2. Let G be a graph withp nodes. Then
(i) The highest power of w) in M(G;w), is the number of nodes inG.
(ii) The coefficient of w‘,"’2 wy in M(G;w), is the number of edges inG.
(iii) For p even, the coefficient of w’z’/ 2inM (G;w), is the number of perfect
matchings inG.
(iv) The coefficient of wiwP®/* in M(G;w), is the number of defect-d
matchings inG.

The following result was proven in Farrell and Guo [5].
Lemma 3. Ifa graph is regular of valency d, then any co-matching graph is also
regular of valency d.

4. Matching properties of the union of isomorphic cycles.
The following lemma can be easily proved . Its proof is left to the reader .

Lemma 4. Let F be the family of circulants with p nodes. Then the basis for
F is(B1,B,,...,B,) wheren= |p/2] and B, is the union of d = gcd(r,p)
copies of the cycle Cyq.

The following lemma is taken from [4].

Lemma 5.

Lp/2]
-k
MGy = 3 2 (7 Fhurhat.
k=0 P~

By the Component Theorem (Lemma 1), we immediately obtain the following
result.
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Theorem 1. LetG = C,, UC, U...UC;, . Then M(G;w) = II2, M(Cy;;w).
In the special case when r; = ¢ for all i, we obtain the following result,

Corollary 1.1. LetG = C,UCp U ...U Gy (n times). Then M(Giw) =
[M(CP;W]".

The following is a general result about matching polynomials.

Theorem 2. The matching polynomial characterizes the unions of copies of a
cycle.

Proof: We consider improper cycles first, then proper cycles.

Improper cylces.

LetG = K1 UK U...UK; (ntimes). Then G is trivially characterized by its
matching polynomial.

Let G = K3 U K3 U...U K3 (ntimes). Then we have

n
MG = 2 n_ n 2r T
(Giw) = (wy + w2) Z (r)wl wy
r=l
Let H be a graph such that M( H;w) = M(G;w). By Lemma 2, we obtain
(i) H has 2nnodes,
(ii) H has nedges, and

(iii) H has one perfect matching.

Now, the perfect matching in H is a spanning subgraph of H. Since it contains n
edges it contains all the edges of H. Hence the perfect matching constitutes all of
H. Itfollows that H is isomorphic to G. Hence G is characterized by its matching
polynomial.

Proper cylces.

Let G = C,UC,U...UC; (ntimes). where p > 2. It has been shown by Farrell
and Guo [5] that Gy, is characterized by its matching polynomial. Therefore we
assume that n > 1. We consider two cases (i) p even and (ii) p odd.
peven.

Let H be a graph such that M(H;w) = M(G;w). Since G is regular of
valency 2, it follows (by Lemma 3) that H is also regular of valency 2. This
implies that H is either a cycle or a union of cycles. Since p is even, G, has two
perfect matchings. Therefore, we can write

M(Cpiw) = w® + pul 2w, + ...+ 2uf/%.
Therefore,

M(Gw) = [w’l’ + p'wf_zwz S 2w’2’/2]ﬂ = M(H,w).
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By extracting the relevant terms we obtain (from Lemma 2) the following infor-
mation about H.
(i) H has pnnodes.
(ii) H has pn edges.
(iii) H has 2™ perfect matchings (from the coefficient of wg"/’ ).
(iv) H hasn2™!p? /4 defect-2 matchings (from the coefficient of w} wg""/z)"l ).
Sincen> 1, wehave2™ > 2. Therefore H has more than 2 perfect matchings.
Thus, H cannot be a cycle. Hence, H must be a union of cycles. Since H has
perfect matchings, all of the cycles mustbe even. Let H = C,, UC,, U...UCy,,
where r; (> 2) are even integers fori=1,2,... ,n
Then H has Y ;.. r; nodes. Since H has pn nodes, we have

Y ri=pn )

i=1

Now, we can count the number of defect-2 matchings in H. First of all, we
observe that a defect-2 matching in H can only be formed by a defect-2 maiching
in some C,, and perfect matchings in all of the other cycles. The number of defect-
2 matchings in C,, is 72 /4, from Lemma 5, with k = (p — 2)/2. The number
of perfect matchings in the (n — 1) other cycles is 271, Hence the number of
defect-2 matchings in H is equal to

no2 1 _n

i 1_ 2 2
I TSRS
i=l i=1

Hence from property (iv) of H, we have

= @)
=yt =

i=1

It can be easily shown (by elementary algebra) that Equations (1) and (2) have the

unique solution 7y = r2 = ...=1r, = p. Hence H = C,U G, U UG =G. It
follows that G is characterized by its matching polynomial.
p odd.

In this case, we can write

M(Giw) = [wf+pw‘,"2wz+...+ pwlwgp—n/z]“. 6))
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Let H be a graph such that M( H;w) = M(G;w). Then Equation (3) yields
the following:
(i) H has pnnodes.
(ii) H has pnedges.
(iii) H has no perfect matchings.
(iv) H has p™ defect-n matchings.

Again, from Lemma 3, we obtain that A must be regular of valency 2. There-
fore, H is either a cycle or a union of cycles. If H is a cycle then H is isomorphic
to Cpy, since H has pn nodes. Hence the number of defect-1 matchings in H is

pn. However, from Equation (3) the coefficient of wlwg”"“"/ 2 is zero. There-
fore, H is not isomorphic to Cp,. It follows that H is a union of cycles. Let
H=0C,UC,U...UC,,. Then

S ri=pn @

i=1

Since the lowest power of w; within the square brackets of Equation (3) is 1,
it follows that the lowest power of w; in the expansion of the right hand side
of Equation (3) is w}; from property (iii) of H, this term occurs with nonzero
coefficient p*. Suppose that some 7; is even. Then H will contain a matching
with n— 1 nodes or less (if other r;’s are also even). Thus M ( H; w) will contain
a nonzero term involving wf, for some k < n. This is impossible. Therefore, all
of the r;’s must be odd.

Now, a defect-n matching in H can occur in only one way. Each cycle C,, must
be covered with a defect-1 matching. The number of defect-1 matchings in C,, is
r;. Therefore the number of defect-n matchings in H is

M2,7 = p" (from property (iv)). (5)

It can be shown that Equations (4) and (5) have the unique solution r; = p, for
i=1,2,...,n Therefore, H = C,UC,U...UC, = G. Hence G is characterized
by its matching polynomial. This completes the proof of the theorem. |

Lemma 4 and Theorem 2 yield the following result.

Theorem 3. Let F be a family of circulants. Then all of the basis graphs of F
are malching unique.

5. Matching and chromatic polynomials of basis complements.

A connection between the matching polynomial and the chromatic polynomial is
given in the following lemma which is taken from Farrell and Whitehead [7]. The
if part is given in Frucht and Giudici [8].
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Lemma 6. LetG’ be a graph with p nodes . Then P(G; \) = M(G;w'), where
w' means thatw in M(QG; (w,w)) is replaced by (\), and dually, M(G' w) =

P(G; \') where \' means that ()\)y, is replaced by the monomial wi "’w”’" if

and only if G has no triangles .
It is clear from the definition of the basis that B is the cycle C,. Therefore,

Lemmas 5 and 6 yield the following result.

Theorem 4.

. - P p_k p—2k _
M(By;w) = E(p—_k) ( B )wl wk and forp > 3 andn=|p/2],

P(Bid = PGz 3, i) = 3 (527 ) (P F)
k

From Lemma 4, we know that B, = Cpja U Cppq U ... U Cyq (d times) where
d = ged(p, ). Hence we have the following result.

Theorem S. Forl <m < n,

M(Buiw) = [; (——(p /%d_ k) ((” - k)w‘.’""wﬁ]d,

where d = gcd(p, m) . Also, if B, is triangle-free, then

P(Bmi)) = P(Gp(1,2,...,m—1,m+1,... ,n); })
d

_ p/d (p/d) — k
i [E; (=) ("% )‘”?"‘]

In the particular case when p is even and n = p/2, we have the following

corollary.
Corollary 5.1.

M(Byiw) = M(K UK U...U Kp5w) = E( ) wilwy™ and

P(Bui ) = P(Cy(1,2,... ,n— 1)) = Z( )(x),,.,

Theorem 6. Forp > 3, a circulant basis graph B, is chromatically unique if and
only ifged(r,p) = 1.

Proof: Let d = gcd(r,p). If d = 1 then B, is C, by Lemma 4. In [2], Chao
and Whitehead proved that the cycle C;, is chromatically unique for all p > 3. If
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d # 1 then B, is the union of d copies of Cy/q by Lemma 4. If p/d = 2 then B,
is the union of d copies of K, which was shown to be not chromatically unique
by Loerinc and Whitehead in [10). If p/d > 3 then B, was shown to be not
chromatically unique by Chia in [3]. 1

6. Computer results on chromatic uniqueness.

A computer investigation was made into the chromatic uniqueness of circulants
having p nodes where 3 < p < 8. Of the 30 nonisomorphic circulants investi-
gated, 23 circulants were found to be chromatically unique. In Table 1, we list the
7 circulants found to be not chromatically unique. Three of these 7 circulants are
forests all of whose edges form a perfect matching. In [10], Loerinc and White-
head showed that these forests are not chromatically unique. Another three of
these 7 circulants are graphs which contain two blocks each containing at least 3
nodes. By Chia’s theorem stated in Section 2, these graphs are not chromatically
unique. The last of these 7 circulants is Cs (1,3 ,4) which has the same chromatic
polynomial as the complement of the disconnected graph shown in Figure 1.

Table 1

Number of circulants { Not chromatically unique
1 none
3 By = K, UK,
2 none
7 B, =C3UG;
By =K,UKyUK>
none

14 By, =Cy4 UG,
Bs=Ky,UK2UKz UK,
Cs(2,4)= Kis UK,
Cs{1,3,4)=CaUCs

Al bWl

~
w

N N

Figure 1
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In [13], Whitehead studied the chromatic polynomials of chorded cycles. In our
notation a chorded cycle is Cp(1,2 ). Read [12] used a computer to investigate the
chromatic uniqueness of chorded cycles. He found C,(1,2) to be chromatically
unique for 5 < p < 9. He conjectured that Cp(1,2) is chromatically unique for
allp > 5.

We conjecture that the complement of the cycle Cp, denoted Cp(2,3,... ,n)
(n = |p/2]) is chromatically unique for all p > 5. This conjecture is true for
5 < p < 8 because Cs{2), Cs(2,3), C1{(2,3), and Cs(2,3,4) do not appear
in Table 1.

The first five circulants in Table 1 are matching unique by Theorem 2 above. In
Farrell, Guo and Constantine [6], it was proven that K, U K, U...U K, (ntimes)
is matching unique for all positive integers n. Therefore Cs(2,4) is matching
unique. In [7], it was shown that if a graph is matching unique then so is its
complement. Therefore, B, = Cs{1,3,4) is matching unique. Hence, all seven
circulants (in Table 1) that are not chromatically unique are matching unique.

It is true that some of the 23 chromatically unique circulants are also matching
unique. Therefore some circulants are both matching unique and chromatically
unique. Hence, it is true that for all positive integers p less than nine, every circu-
lant with p nodes is either matching unique or chromatically unique or both.
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