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1. Introduction

Hanani [3] was the first to determine necessary and sufficient conditions for the
existence BIBDs with block size 4, i.e., (v, k, A)-designs. In the particular case
of A = 2, the condition on the number of elements is especially simple: v = 1
(mod 3).

The situation is far less satisfactory as far as enumeration of (v, 4, \)-designs
is concerned. The exact values of N{v,4,)), the number of non-isomorphic
(v,4,)\)-designs, are known only forv < 16 if A = 1,and forv < 13 if A = 2
[2], (4):

N(7,4,2)=1, N(10,4,2)=31[2], N(13,4,2)=2407 [4).

The current status of the existence problem for (v,4, \)-designs having addi-
tional properties, such as an automorphism of prescribed type, also leaves a lot to
be desired. For instance, it has been conjectured, but remains far from proved that
acyclic (v,4, 1)-design exists ifand only if v = 1 or4 (mod 12),v # 16, 25,
28.

In this paper we take a look at the small dicyclic (v, 4 ,2) -designs (for precise
definitions, see Section 2). One of our objectives was to improve the lower bound
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N(22,4,2) > 1 given in the tables [5]. Our main result is that there are ex-
actly 7921 nonisomorphic dicylic (22,4, 2)-designs. Of these designs, 43 have
automorphism group of order 22 while the remaining 7878 have group of order
11,

Our other objective was to investigate the existence of (v, 4, 2)-designs admit-
ting 2-resolutions. Here, a 2-resolution is a partition of the block set of the design
into twofold parallel classes, or 2-PCs, where a 2-PC is a set of v/2 blocks with
the property that each element is contained in exactly 2 blocks of it. Clearly, for
a (v,4,2)-design to admit a 2-resolution, one must also have v = 0 (mod 2),
thus v = 4 (mod 6). One of us (RCM) formulated the following problem: For
which orders v = 4 (mod 6) does there exist a (v, 4, 2)-design admitting a 2-
resolution? Although recently this question has been essentially settled [6], many
interesting questions remain.

In addition to obtaining all nonisomorphic dicyclic (22,4, 2)-designs, we in-
vestigated the 43 dicyclic designs with automorphicm group of order 22 for 2-
resolutions. Each of the 40 cyclic designs admits a 2-resolution (some admit as
many as 27896 distinct 2-resolutions!) but out of the three designs whose group
is Dy, only one admits 2-resolutions.

2. Definitions

A balanced incomplete block design BIBD(v,b,r, k, \) is a v-set V together
with a collecton of b distinguished k-subsets of V' called blocks such that each
element of V is contained in exactly r blocks, and each 2-subset of V' is contained
in exactly ) blocks. Since r = A(v—1)/(k—1) and b= dv(v—1)/[k(k-1)],
the two parameters r, b are usually supressed from notation, and, for brevity, we
speak of a (v, k, \) -design.

In this paper we are concerned with the case when k = 4 and A = 2, i.e. with
The case of (v, 4, 2) -designs. By using his powerful recursive method, Hanani [3]
was the first to prove that a (v, 4, 2)-design exists ifand only if v = 1 (mod 3).
Let us mention in passing that till today no direct proof of this resuit is available
(for more recent different recursive proofs, see [8], and [9]).

A (v, k, \)-design is called cyclic if it has an automorphism permuting the ele-
ments in a single cycle of length v. It is called dicyclic if it has an automorphism
consisting of two cycles of length v/2 each. Thus for a dicyclic (v, 4, 2)-design
to exist, we must have v = 4 (mod 6). In the next two sections we enumerate
the dicyclic (16,4 ,2)- and (22,4, 2) -designs.

A g-fold parallel class (briefly, a g-PC) in a (v, k, M) -design is a set R of gv/k
blocks such that each element is contained in exactly g blocks of R. A g-resolution
is a partition of the set of blocks into g-PCs. A (v, k, )\) -design admitting a ¢-
resolution is called g-resolvable.
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3. The dicyclic (16,4, 2) -designs

Let the set of elements be V = {0,1,2,3,4,5,6,7,A,B,C,D,E,F,G,H},
andleta=(0123456 7)(ABC D E F G H) be the dicyclic automorphism
ofa (16,4, 2)-design.

There exist two tactical configurations for the base blocks of adicyclic (16,4 ,2)-
design (here 1 and 2 stands for the element orbits of digits, and of letters, respec-
tively):

Type 1. 1112 1112 1222 1222 1122
TypeIl. 1122 1122 1122 1122 1111* 2222*

(The asterisk indicates petite orbits of length two — the corresponding base blocks
are 0246 and ACEG).

Moreover, solutions of type I split into two classes, depending on whether the
orbit with the base block of type 1122 is a full orbit of length 8 (Type Ia) or a
repeated short orbit of length 4 (type 1b).

The actual designs were generated by hand while the subsequent isomorph
rejection was done by a computer using the general isomorphism program of
Brendan McKay. It turns out that there are exactly 8 nonisomorphic dicyclic
(16,4 ,2)-designs: four of type Ia (Nos. 1-4) and four of type Ib (Nos. 5-8)
(any design of type II turns out to be isomorphic to one of type Ib). The base
blocks for these 8 designs are listed in Table 1, together with the automorphism
group order, block orbit partitioning, and the number of parallel classes. All 8 de-
signs are transitive on elements but only one (No. 5, the “doubled affine plane”) is
block-transitive. Designs No. 1-4 have no repeated blocks, No. 5 has 20 repeated
blocks, while Nos. 6-8 have 4 repeated blocks each. Designs No. 5,6,7 are de-
composable, while Nos. 1,2,3,4 and 8 are indecomposable. All designs but No. 1
are resolvable.

Table 1

Design Base Blocks 1G| BOP #C D R
No.

1 013E 014D 4ABD 3ABE 02AC 32 16+16+8 8 No No
2 O13E O0l14H 4ABD 7ABE 02AC 32 16+16+8 16 No Yes
3 013C O014F S5ACD SABE 02AC 64 16+16+8 16 No Yes
4 013G 014F 1ACD SABE 02AC 64 16+16+8 16 No Yes
5 013C 013C SACD S5ACD (4AE 5760 40 80 Yes Yes
6 013C 023B 6ABD S5ACD O4AE 192 32+8 32 Yes Yes
7 013C 023F 2ABD S5ACD O4AE 768 32+8 48 Yes Yes
8 012D 025H 2ABD S5ACD O4AE 256 32+8 32 No Yes
|Gl = group order

#PC = number of parallel classes
BOP = block orbit partitioning
D = decomposable

R =resolvable
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(22,77,14,4,2)-designs

Base blocks
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16 042021 051119 05
20 041317 051219 05
20 041321 0516 18 0 5
11 03713 05 1218 0 12
11 037 15 051218 0 13
15 03712 051319 0 11
15 03 718 05 13 19 0 12
17 037 14 0513 19 0 12
17 03716 051319 0 11
17 03719 051318 0 11
17 03721 051318 0 11
19 03711 05 12 17 0 13
19 03716 05 12 17 0 11
21 03718 05 1217 0 13
21 03720 065 1217 0 11
16 02613 0514 19 0 12
16 02618 05 14 20 0 11
17 026 16 05 12 18 0 11
17 02617 05 14 20 0 12
17 02618 05 15 20 0 11
20 02616 05 11 17 0 12
21 02611 05 12 17 0 13
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Table 2. Transitive (22,77,14,4,2)-designs

No. Base blocks 2-PC 2-RES
23 01311 01416 027 13 0514 20 01216 18 0 13 14 17 O 18 19 21 782 1892
24 01311 01416 02717 051419 0 11 13 18 O0 12 13 16 O 17 18 20 496 913
25 01311 01417 02711 051218 0 12 19 20 O0 14 1517 0 14 16 21 650 880
26 01311 01417 02714 05 14 20 0 11 1517 O 12 13 16 0 18 19 21 859 27986
27 01311 01417 02714 051520 O0 1119 20 O 12 16 18 O 13 14 17 705 616
28 01311 01420 02720 051117 012 13 15 O 14 15 18 0 14 16 21 540 11
29 01311 01421 02715 051217 01116 20 0 13 14 16 0 14 15 18 727 528
30 01311 01820 02616 051218 0 11 15 20 0 13 16 17 O 14 15 17 562 880
31 01311 01813 02613 0514 19 0 12 15 16 O 15 17 21 O 17 18 20 837 638
32 01311 01813 02617 0514 20 012 14 18 0 13 16 17 0 18 19 21 881 27896
33 01311 01814 026 18 0514 20 011 1317 0 12 1516 0 18 19 21 804 1892
34 01311 01814 026318 051520 O0 1119 20 0 12 14 18 O 13 16 17 540 9213
35 01311 01815 02611 05 1217 O0 13 14 16 O 13 15 19 O 17 20 21 683 682
36 01311 01815 02616 051117 01213 15 0 13 18 20 O 16 19 20 584 308
37 01311 01820 02711 051218 0 13 16 17 O 14 15 17 O 14 16 21 661 4389
383 01311 031813 027 14 0514 20 0 11 15 17 0 13 16 17 0 18 19 21 881 27896
39 01311 01813 02717 051419 011 13 18 0 12 15 16 O 17 18 20 672 726
40 01311 01814 02713 0514 20 0 12 1516 ©0 12 16 18 0 18 19 21 672 7227
41 01311 01814 02714 051520 0 11 19 20 O 12 16 18 O 13 16 17 617 528
42 01311 01815 02720 051117 0121315 0 14 16 21 O 16 19 20 540 11
43 01311 01815 02715 0512 17 0 11 16 20 0 13 14 16 0 17 20 21 540 913



4. The dicyclic (22,4, 2)-designs

LetV = {0,1,...,21},andleta= (0 1 ... 10)(11 12 ... 21) be the dicyclic
automorphism of a (22,4,2)-design. We have b = 77, and so necessarily the
blocks of any such design will fall into 7 full length (i.e. length 11) orbits under
«. There are essentially two different tactical configurations for the 7 base blocks
(again, 1 and 2 stand for the two element-orbits):

L 1111 1122 1122 1122 1122 1222 1222
IL. 1112 1112 1112 1122 1222 1222 1222,

(Another tactical configuration is obtained from that of type I by interchanging 1
and 2.) For reasons that are self-evident, we refer to these two configuratons (and
the respective solutions) as asymmetric, and symmetric, respectively.

The designs of both types were generated on a Sun-4 computer by a lexico-
graphic hierarchical complete backtrack from all multiplier non-equivalent starts
corresponding to the two tactical configurations. The programs were written in
the C programming language. The isomorph rejection was greatly assisted by a
straightforward extension of the Bays-Lambossy multiplier theorem [1] (see also
[71), according to which, if two dicyclic (22,4 ,2)-designs are isomorphic then
there exists a multiplier isomorphism preserving orbits in the asymmetric case,
and preserving or interchanging orbits in the symmetric case, respectively.

Nevertheless, after obtaining what we believed to be a complete set of noni-
somorphic dicyclic designs, the general purpose isomorphism testing program of
Brendan McKay was used to check this independently.

The number of nonisomorphic dicyclic (22,4, 2)-designs turns out to be sur-
prisingly large. There are 4546 nonisomorphic designs of the asymmetric type,
and 3375 designs of the symmetric type, for a total of 7921 nonisomorphic dicyclic
(22,4,2)-designs. This number is obviously too large for a complete analysis.

A reasonable size subclass is provided by the 43 designs having automorphism
group of order 22 (all the other 7878 designs have group of order 11). Of these
43 designs, three are of asymmetric type and have as their automorphism group
the dihedral group Dy;. The other 40 designs of symmetric type are all cyclic.
The base blocks for these 43 designs appear in Table 2. For each of these designs,
all twofold parallel classes and all 2-resolutions were generated; their numbers
are also given in Table 2. Each of the 40 cyclic designs is 2-resolvable, with the
number of distinct 2-resolutions ranging from 11 to 27896. Interestingly, only one
of the three designs with the dihedral group (design No. 2) is 2-resolvable. An
example of a 2-resolution of the design No. 2 is given in Table 3.
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Table 3.
A 2-resolution of the design No. 2.

2-PC Twofold parallel classes

1 0134 0121521 1111316 2 71718 2 81213 3141719
4151820 56 8 9 5161921 67 910 10111420

2 07 810 0111416 1245 1121517 2356 391314
4 91920 6161821 7111719 8121820 10131521

3 0189 0 51516 12910 2121417 3467 3131518
4141619 5102021 6111720 7121821 8111319

4 02310 061121 1 61617 1 71112 2131618 3 81819
4578 4101415 5151720 9121420 9131921

5 i i+2 j+19 j+20 1,§ € Z11; first two elements reduced to the range
6 i i+d j+13 j+17 {0,1,...,10},thelast two to {11,12,...,21}
7 i 45 j+12 j+19

5. Conclusion

As a consequence of the results of Section 4, the bound for the number of noniso-
morphic designs with parameter set No.100 in the tables (5] can now be improved
to Nd(22,77,14,4,2) > 7921.

It appears reasonable to conjecture that a dicyclic (v, 4 ,2)-design exists if and
only if v = 4 (mod 6) (of the three nonisomorphic (10,4, 2) -designs, cf. [2],
exactly one is dicyclic). We also conjecture that a cyclic (v, 4, 2) -design exists if
andonly ifv=1 (mod 3), v#10.

Several questions can be asked concerning 2-resolutions of (v, 4 ,2)-designs.
For example, is it true that for every v = 4 (mod 6) there exists a (v,4,2)-
design without a 2-resolution? If yes, what is the smallest ¢ such that every such
design admits a g-resolution? The computational results of this paper leave lots
of room for speculation.
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