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Abstract. It is also shown that for a certain family of graphs (called thistles), the
coefficients of the matching polynomial repeat themselves symmetrically. This turns
out to be a characterizing property for some thistles,

1. Introduction.

First of all, we will give some definitions which are crucial to the material which
follows.

Let (G, u) and ( H,v) be two graphs, rooted at u and v respectively. The coa-
lescence of G and H , is the graph obtained by identifying the roots u and v. We
simply say that H is attached to G (or G is attached to H), if the roots are clear
or unimportant. The nodes u and v are called nodes of attachment. We will de-
note by G( H), the regular graph obtained from G and the rooted graph (H, u),
by simultaneous coalescence of a copy of H, at u, to every node of G. We then
say that H is attached to every node of G. In the special case when H is an edge
(twig), G( H) will be called a thistle.

Let G be a graph consisting of a graph G with non-trivial graphs (graphs with
more than one node) attached to it. Then Gy is called the core of G, if Gy itself
is not formed by non-trivial attachments (that is, attachments of graphs with more
than one node.)

We show that for all thistles the coefficients of the matching polynomial repeat
themselves symmetrically and that this property characterizes certain thistles. Our
results generalize a result given in Godsil and McKay [5].

2. Simple thistles.

Let Go be a core. We can define a recursive family of regular cacti as follows.
The first member is obtained by attaching the rooted graph ( H, u) to every node
of Gy, that is, G = Go(H). The second member is G = G1(H), etc. The kth
member is Gy = Gy_1(H).

Definition: A family is called simple if Gy is a node. A simple family is interest-
ing. In this case, G| = Go(H) = H,so the first member is the attached graph. We
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can also observe that H is simply H itself, with nodes attached, that is. Therefore
Gl = Go(H) = H(GO)-

G2 = G\(H) = H(H) = H(G1)
Gs = G2(H) = H(G1)(H).

Now, the attachment of H to every node of an attached graph G yields G1(G1) =
G,. Hence we get G3 = G1(G2)-=> G = G2(G1) = G1(G2).

It is clear that the above argument can be repeated for Ga, G's, etc. Hence we
have the following theorem which can be formally proved by induction on k.

Lemma 1. For a simple family,
Gk = Ge-1(G1) = G1(Gg-1).

We can use the thistle function (see Farrell [2]) and Lemma 1 in order to obtain
a formula for the matching polynomial of Gy.

It has been observed that in the matching polynomials of simple thistles; and
indeed in all thistles, the coefficients repeat themselves symmetrically. We will
prove a theorem which formalizes this observation.

Lemma 2. Let(G,) be a family of thistles with core H, where |V(H)| = p and
|E(H)| = g, then G, has2p nodes, andq + 2"p edges.

Proof: The result can be easily established by induction on . ]

From the above theorem, we see that G, must have an even number of nodes,
since 27p is even, forr > 0.

Theorem 1. Let Gy be the kth descendant of a family of thistles. Let
P
M(Gk; _12) = E a,w%p'z"wi s
r=0
where 2 p is the number of nodes in Gy. Then
6r=ap, for 0 <r<p

(that is, M (Gi; w) is symmetric ).
Proof: Let .
M(Gi-1 w) = E aw?® Y,

i=0
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where 2 s in the number of nodes in G¢-;. Since G is obtained from G¢_; by
adding twigs, Gy = Gi_1(H), where H is a twig. It follows that by using the
thistle function for matching polynomials, we get

M(Giw = Eai (w}+ wz)za—zi (w}ws)’

1=0

8 25-2¢ 25—24\ 2; 24.2i
= Ser (077 ettt

=0 Jj=0
s 25-2i
- Z > (23— 21) w22y 2emicd,
i=0 j=0
From this, we get that the coefficient of wj is
8 . 8 o
28— 21 28-21
gai(’zs—r—i) B .Z_;a.-( T—1 )

G will have 4 s nodes since G_; has 2 s nodes. Therefore p = 2 s.
8
23—-21
Coefficient of w3*™" = ) ~a;
oefficient of w2 ga'(Zs—(Zs—r)—i)

2 23-2%
=2 e,y
=0 r—1
= coefficient of wj.

|

Theorem 1 is interesting. It establishes the existence of a general class of graphs

whose matching polynomials are perfectly symmetric. As far as we know, thistles

are the first general class of graphs that have been identified as having this property.

The following theorem shows that this properly characterizes thistles which have
no triangles, that is, triangle-free thistles.

Theorem 2. Let G be a triangle-free connected graph. Then G is a thistle if and
only if its matching polynomial is symmetric.

Proof: The necessary part of the theorem has already been established in Theorem
1. We will now show that if the matching polynomial of a graph G is symmetric
then G must be a thistle.

[£]
Let M(G;w) = Y a,w™>"w}; and assume that o, = a[ g]_,,

r=0
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for0 < r < [p/2]. Clearly a9 = 1 and a; = g, the number of edges in G.
Therefore agp/2) = 1 and a(p/zj-1 = ¢- It follows that G has exactly one perfect
matching and ¢ defect-2 matchings (matchings with 2 nodes). Since G has a per-
fect matching, it must have an even number of nodes = p = 2 s, for some positive
integer s. Therefore, the perfect matching C'in G will contain s edges.

Let us count the defect-2 matchings in G. We can omit any edge of C and obtain
a defect-2 matching. Thus, there are s of these. For every edge ab of G which does
notbelong to C, az and by are edges in C, for some nodes z and y in G. By using
the edge ab and keeping nodes z and y as isolated nodes, we can obtain a defect-
2 matching by including all the other edges of C. There willbe ¢ — s defect-2
matchings of this type. Since each of these matchings contains an edge that does
not belong to C, they will all be distinct from those already counted above. Hence,
up to this point we have s+ ¢—s8=¢ defect-2 matchings. Therefore, there are no
other defect-2 matchings in G.

Suppose that G contains a node z such that d(z) (the valency of z) > 1 and z is
notadjacent to any node of valency 1. Since G has a perfect matching, d(z) # 0.
Therefore d(z) > 2. Thus 3 nodes y and z adjacent to z, such thatd(y) > 1 and
d(z) > 1 and yz ¢ E(G) (since G is triangle free). Without loss in generality,
we will assume that the edge zz belongs to C. Then 3 nodes ¢, u and v such
that ¢ and u are adjacent to y and z respectively; u is adjacent to v and ty and
uv belong to C. Consider the path tyzzuv. We can cover this path, by using the
edges Ty and zu, together with the isolated nodes ¢ and v. This cover, together
with the remaining edges of C, yield a new (since it contains 2 edges of G that do
not belong to C) defect-2 matching in G. This is a contradiction. Therefore, no
such node z exist. Hence every node in G is either of valency 1 or else is adjacent
to a node of valency 1.

Clearly no node of G can be adjacent to0 more than one node of valency 1, since
G has a perfect matching. Therefore, every node of G is either of valency 1 or else
is adjacent to exactly one node of valency 1. It follows that G is a thistle. This
completes the proof. 1

It has been shown (see Farrell [3]) that the circuit polynomial of a graph G
(denoted by C(G; w)) is related to the characteristic polynomial of G (denoted
by #(G; X)), as follows;

(G ) = C(G; (X, ~1,-2,-2,...)).

However, if G is a tree, then its only circuit covers are matchings. Therefore
M(G; w) and C(G; w) coincide, for trees. Hence, if T is a tree,

¢(T32) = M(T; (X, -1)),

Clearly, a thistle is a tree if and only if its core is a tree. Hence, we have the
following corollary.
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Corollary 2.1. Let T be a tree. Then T is a thistle if and only if its characteristic
polynomial is symmetric.

Corollary 2.1 is essentially the result given in Godsil and McKay [5] (Theorem
3.2). Hence, Theorem 2 is a generalization of their result. It should also be noted
that all the results given in this paper also hold for characteristic polynomials, if
we restrict the graphs to be trees.

5. Discussion.

It has been observed by several authors, that the coefficients of the matching poly-
nomial increase then decrease. This of course, has also been observed for other
graph polynomials, including chromatic polynomials. Theorem 2 has identified a
class of graphs for which the distribution of the coefficients is symmetrical about
the largest value. Since thistles have an even number of nodes and also a per-
fect matching, it follows that their matching polynomials have an odd number of
terms. Thus, the symmetry is quite a “beautiful” one. As the theorem implies, no
other triangle free graphs have this property.
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