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Abstract. Numbers similar to those of van der Waerden are examined by considering
sequences of positive integers {z1,%2,... ,Zn} With Z341 = z;+ d+ r;, whered € Z*
and 0 < r; < max(0, f(i)) for a given function f defined on Z*. Let wy(n) denote
the least positive integer such that if {1,2,... ,ws(n)} is 2-colored, then there exists
amonochromatic sequence of the type just described. Tables are given of wy(n) where
J(5) = ¢ — k for various constants k, and also where f(i) ={if{i > 2, f(1) = 0. In
this latter case, as well as for f(1) = 1, an upper bound is given that is very close 10 the
actual values. A tight lower bound and fairly reasonable upper bound are given in the
case f(§) =¢—1.

1. Introduction.

In 1927 van der Waerden [8] proved the existence of numbers w(n), defined to
be the least positive integer which guarantees that if {1,2,... ,w(n)} is parti-
tioned into two sets, then one of the two sets contains an arithmetic progression of
length n. The only known nontrivial values of w(n) are w(3) = 9, w(4) = 35,
and w(5) = 178 (see [2] and [7]). Until very recently, all known proofs of van
der Waerden’s theorem yielded such weak upper bounds on w(n) that they were
not even primitive recursive functions of n. Shelah [6] has recently obtained a
primitive recursive upper bound, although it is rather large. For example, it is still
unknown if w(n) is bounded above by a tower of n2 ’s.

In [3], [4], and [5], Landman and Greenwell found reasonable upper bounds,
as well as exact values, for numbers analogous to w(n) by considering a larger
class of sequences than the class of arithmetic progressions, namely those gener-
ated by iteration of a polynomial function with integer coefficients. In this paper
we examine a different generalization of arithmetic sequences, which can loosely
be described as arithmetic sequences with some slack allowed. The significance
of this class of sequences is that we are able to prove upper bounds for the cor-
responding Ramsey numbers which, unlike those in [3-5], are quite closs to the
actual values. Further, by sufficiently decreasing the allowable slack, these num-
bers eventually become the van der Waerden numbers themselves.
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The following terminology and notation will be used throughout the paper. We
denote {1,2,...,k} by [1,k]. A 2-coloring of [1, k] refers to a function
x:[1,k] — {0 1} A setX is monochromatic under a coloring x if x is constant
on X. If f is a function defined on Z*, then a wy-sequence of length n isa
sequence of positive integers {z1,z2,. o Ta} With 234y = zi+ d+ rifori =
1,...,n—1whered, r; € Z* and 0 g r; < max(0, f(1)). A sequence is a
w-sequence if f(5) = i fori > 2 and f(1) = 0. The symbol a(n) will denote
the least positive integer which guarantees that if [1,a(n)] is 2-colored, then
there exists a monochromatic a-sequence of length n, where a-sequence refers
to any type of sequence under consideration. Note that wyc;)(n) > wyn(n) if
fG3) < g(d) fori=1,...,n—1,and wi(n) < wW(n) < w;-1(n). Note also
that w;_i(n) = w(n) fork >n—1.

2. Bounds.

We have an upper bound for w;(n) and a lower bound for w;_ (n), both of which
are almost identical to the values of the functions given in the next section. We also
have an upper bound for W(n) which is very close to the known values. Finally,
we have an upper bound for w;.., (n) which is not too much larger than the true
values.

Theorem 1. Letn > 2. If [1,n(n+ 1)/2] is 2-colored, then there exists a
monochromatic w;-sequence of length n with d=1. Hence w;(n) <n(nt+1)/2.

We omit the proof of Theorem 1, since it is similar to but slightly simpler than
the proof of Theorem 2.

Theorem 2. Forn > 3, if [1,n— 2+ n(n+ 1) /2] is 2-colored, then there
exists 2 monochromatic w-sequence {x1,... , 2o} Withd < 2 andz, + d
< n—1+n(n+1)/2. Hencew(n) < (n— 1)(n+ 4)/2.

Proof: An examination of the 2-colorings of [1, 7] shows that the theorem is true
forn = 3. We proceed by induction on n. Assume that the result holds for n

and 2-color [1,n— 1+ }_‘ml = A. By the induction hypothesis there exists a
monochromatic w-sequence {z1, ... ,Zn} Withd < 2 and z,+d < n—1+30, i.
Suppose it is colored red. Let X = {zn+d, zn+d+ 1,... ,Zo+d+n} CA. If X
is colored blue, then X is a monochromatic w- w-sequence of length n+ 1 contained
inAwithd = 1,sothatz, + d+ n+ d < n+ Y0 i. Otherwise, if z, + d+ j

is colored red for some j, then {z1,... , Ty, :c,, + d+ j} is a red w-sequence with
d < 2 satisfyingz, +d+j+d < n+ E,,, 1. Thus in either case the theorem
holds. 1

Theorem 3. w;_1(n) >2(n—1)2 + 1.

Proof: Forj=0,1,...,2n—3,define x: [1,2(n—1)21 — {0,1} by x(4;) =
0 if j is evenand x(A;) = 1if j is odd, where 4; = {ij{(n=1)+1,j(n—1)+2,
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., (j+ D(n—1)}. Assume {z1,...,Z,} is a monochromatic w;_; -sequence
under y. We show that all the z; must be in the same A, which contradicts the
size of A;.

Suppose 7y € A; . If z, & Aj,thenz; € A, wheres > j+2,50z2 — 11 2 n
Then since Ti+1 — Z; > T2 — 1, and since |Ax| = n= 1 for each k, all the z;’s
would have to be in distinct Ag’s, but there are only n — 1 A,’s for which k has
the same parity as j. Hence z, must be in A;. Assume that2 < k < n—1
and that 1,23, ..., 7k € Aj. If zps1 @ Aj, then 441 — ¢ > m, and since
re < k—1, we have d > n— (k — 1). However, since |4;| = n— 1, we have
d< (n-2)/(k—1) < n— k, acontradiction. Thus z;+1 € A;. By induction,
we have z,,... ,Z, € Aj, completing the proof. 1

Theorem 4. Forn> 2,wi_1(n) < my = 1+2(n—1)2+2 Y%} i(i—1), and
every 2-coloring of [1,m,] contains a monochromatic n-term w;_, -sequence
withd < 2(n—1).

Proof: Since w;_1(2) = 3, w;_1(3) = 9, and w;_;(4) = 19, the result clearly
holds for n= 2,3, and 4. We proceed by induction on n. Assume the result holds
for n > 4 and 2-color [1,mp.1] with x. Thus there exists a monochromatic
w;_y-sequence X = {z1,...,z,} Withd < 2(n—1). Let x(X) = 1. For
i=0,...,2ndefine A; = {Tp+d+mi, zotd+ni+l,... T +d+ni+(n-1)}.

Note that z, + d+ 22 < 1+ 2(n—1)2+2 0 i(i— 1) + 2(n—1) + 22

= 14272 +2 Y2 4 i(i—1) = my, . Ifthere were no ( a+ 1) -term monochromatic
w;_1-sequence Y in [1,mys1] with d(Y) < 2n, then all members of Ao must
have color 0. Hence, all members of A; must have color 1 for ¢ odd and color
0 forieven. ButthenY = {z, + d+ ni:i = 0,...,n} is a monochromatic
w;_1 -sequence with d(Y") = 2, so the theorem follows. ]

We note that we have a degree 2 polynomial upper bound for w;(n), and a de-
gree 3 polynomial upper bound for w;_; (n). We conjecture that there is a degree
k + 2 polynomial upper bound for w;_x(n).

3. Numerical values.

Using the algorithm described in [1] and (5], we have computed the following
values on an IBM-PC using Turbo-Pascal, except for w;_4(5), which we took
from [71].
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\n 3 4 5 6 7 8 910
w; 6 10 14 20 27 34 4 52
w 7 11 16 21 29 36 45 55
wi_1 9 19 33 52 74 100

w2 9 22 38 60

wiy ... 35 59 >88

Wi-4 eee ... 178

Since w;_¢(n) = w(n) for k > n— 1, one approaches the van der Waerden

numbers, which are printed in bold face, by moving down the columns. Filling out

more values in the table could give clues as to the size of other van der Waerden

numbers, but the computation time became excessive. For example, w;_3 (5) took
5 days and w;_3 (6) took 27 days.
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