Indecomposable simple 2-(v, k, λ) designs of small orders

Shen Hao Department of Applied Mathematics Shanghai Jiao Tong University

Abstract. In this paper, simple 2-(9, 4, λ) designs are constructed for $\lambda = 3q$, $1 \le q \le 7$, and indecomposable simple 2-(v, k, λ) designs are constructed for it all $10 \le v \le 16$ and smallest possible λ for which the existence of simple 2-(v, k, λ) designs are previously undecided.

1. Introduction

A t- (v, k, λ) design is an ordered pair (V, B) where V is a finite set containing v elements and B is a collection of k-subsets (called blocks) of V such that each t-subset of V is contained in exactly λ blocks. A 2- (v, k, λ) design is also known as a balanced incomplete block design.

A t- (v, k, λ) design is called simple if it contains no repeated blocks. A t- (v, k, λ) design (V, B) is called decomposable or reducible if there is a sub-set B' of B such that (V, B') is a t- (v, k, λ') design for some $0 < \lambda' < \lambda$. A t- (v, k, λ) design is called indecomposable or irreducible if it is not decomposable.

The necessary conditions for the existence of a 2- (v, k, λ) design are

$$\lambda(\nu-1) \equiv 0 \pmod{(k-1)},$$

$$\lambda\nu(\nu-1) \equiv 0 \pmod{k(k-1)}.$$
 (1)

It is well known ([5]) that for k = 3, 4, 5 and all λ , (1) is also sufficient for the existence of a 2- (v, k, λ) design with the exception $(v, k, \lambda) = (15, 5, 2)$, and for k = 6 and $\lambda \ge 2$, (1) is also sufficient for the existence of a 2- $(v, 6, \lambda)$ design with the exception $(v, k, \lambda) = (21, 6, 2)$.

It is not difficult to verify that the following is an additional condition for the existence of a simple $2-(v, k, \lambda)$ design:

$$\lambda \le \binom{v-2}{k-2}.\tag{2}$$

In the case k = 3, it is proved ([6]) that (1) and (2) are also sufficient for the existence of a simple $2-(v,3,\lambda)$ design.

H.-D.O.F. Granau ([4]) listed the known results on the existence of simple t- (v,k,λ) designs for $6 \le v \le 16$. In the range $6 \le v \le 9$, the existence of simple 2-(9,4,3q) for $2 \le q \le 5$ remains unknown. In the range $10 \le v \le 16$, there are 13 parameter triples (v,k,λ) for the smallest possible λ for which the existence of indecomposable simple 2- (v,k,λ) designs remains unknown.

It is the purpose of the present paper to prove that there exists a simple 2-(9,4,3q) design for each q, $41 \le q \le 7$, and there exists an indecomposable simple 2- (v,k,λ) design for each of the 13 parameter triples (v,k,λ) for which the existence of a simple 2- (v,k,λ) design is previously undecided.

2. Construction of simple 2-(9,4,3q) designs

Let
$$(Z_v, \mathbf{B})$$
 be a t - (v, k, λ) design. For $B = \{a_1, a_2, \dots, a\} k \in \mathbf{B}$, let $B + x = \{a_1 + x, a_2 + x, \dots, a_k + x\}, \quad x \in Z_v$

If for each $B \in \mathbf{B}$ and each $x \in Z_v$, we have $B + x \in \mathbf{B}$, then (Z_v, \mathbf{B}) is called a cyclic $t - (v, k, \lambda)$ design.

The necessary condition for the existence of a simple 2-(9,4, λ) design is $\lambda = 3q$, $1 \le q \le 7$. We will prove that this condition is also sufficient. In fact, we will prove the following stronger result:

Lemma 1. There exists a cyclic simple 2 - (9, 4, 3q) design for each $q, 1 \le q \le 7$.

Proof: We construct three (9,4,3) difference families and a (9,4,6) difference family on \mathbb{Z}_9 as follows:

$$D_1 = \{\{0,1,2,5\}, \{0,1,4,6\}\};$$

$$D_2 = \{\{0,1,2,5\}, \{0,1,3,7\}\};$$

$$D_3 = \{\{0,1,3,4\}, \{0,1,3,5\}\};$$

$$D_4 = \{\{0,1,2,3\}, \{0,1,4,5\}, \{0,1,4,7\}, \{0,2,4,6\}\}.$$

From these differences, we obtain three cyclic 2-(9,4,3) designs, denoted (Z_9,B_1) , (Z_9,B_2) , (Z_9,B_3) respectively, and a cyclic 2-(9,4,6) design, denoted (Z_9,B_4) . It can be checked that all the orbits of the base blocks of D_1 , D_2 , D_3 and D_4 under the action of the additive group Z_9 are disjoint, so the 2-(9,4,3) designs and the 2-(9,4,6) design obtained above are simple. Let $B_5 = B_1 \cup B_4$, $B_6 = B_2 \cup B_5$, $B_7 = B_3 \cup B_6$; then (Z_9,B_5) is a cyclic 2-(9,4,9) design and (Z_9,B_6) is a 2-(9,4,12) design. Let B denote the set of all the 4-subsets of Z_9 ; then (Z_9,B) is a cyclic simple 2-(9,4,21) design, (Z_9,B) is a cyclic simple 2-(9,4,18) design and (Z_9,B_7) is a cyclic simple 2-(9,4,15).

3. Indecomposable simple 2- (v, k, λ) designs for $10 \le v \le 16$

In this section, we will construct simple 2- (v, k, λ) designs for $10 \le v \le 16$ and the smallest possible λ , whose existence was previously unknown. As λ is the smallest possible for the existence of a 2- (v, k, λ) design, the designs constructed in this section must be indecomposable.

Lemma 2. There exists a cyclic indecomposable simple 2 -(11,4,6) design.

Proof: It is easy to verify that the following is a (11,4,6) difference family on

$$D: \{0,1,2,4\}, \{0,1,2,6\}, \{0,1,3,6\}, \{0,1,5,8\}, \{0,2,4,8\}$$

 Z_{11} can be regarded as a group acting on the set of 4-subsets of Z_{11} . The orbits of the above 5 base blocks under the action of Z_{11} are disjoint, thus we obtain a cyclic simple 2-(11,4,6) design. As 6 is smallest possible for the existence of a 2-(11,4, λ) design, this design is indecomposable.

Lemma 3. There exists a cyclic indecomposable simple 2 -(13,5,5) design.

Proof: The following is a (13, 5, 5) difference family in Z_{13} and the base blocks under the action of Z_{13} are disjoint:

$$D: \{0,1,6,8,10\}, \{0,1,3,9,10\}, \{0,1,3,5,6\}$$

As there doesn't exist a 2-(13,5, λ) design for $1 \le \lambda < 5$, we obtain a cyclic indecomposable simple 2-(13,5,5) design.

Lemma 4. There exists a cyclic indecomposable simple 2 -(15,4,6) design and a cyclic indecomposable simple 2 -(15,6,5) design.

Proof: We construct a (15,4,6) difference family D_1 and a 2-(15,6,5) difference family D_2 on Z_{15} as follows:

$$D_1: \{0,1,3,7\}, \{0,1,3,10\}, \{0,1,2,11\}, \{0,1,4,6\}, \{0,1,4,9\}, \{0,1,5,7\}, \{0,2,8,12\}$$

$$D_2: \{0,1,3,4,10,12\}, \{0,1,2,3,7,11\}, \{0,2,5,7,10,12\}$$

The orbits of the base blocks in each difference family under the action of Z_{15} are disjoint, so we obtain a cyclic indecomposable simple 2-(15,4,6) design and a cyclic indecomposable simple 2-(15,6,5) design from D_1 and D_2 respectively.

It is convenient in some cases to construct 2- (v, k, λ) designs on $Z_{v-1} \cup \{\infty\}$ instead of Z_v , where ∞ is an element which is fixed under the action of the additive group Z_{v-1} . In this case we define

$$x + \infty = \infty$$
, for $x \in Z_{v-1}$

and consider difference families on $Z_{v-1} \cup \{\infty\}$. The designs obtained by developing the base blocks (mod v-1) are called rotational.

Lemma 5. There exists a rotational indecomposable simple 2-(12,5,20) design.

Proof: The base blocks of the desired 2-(12,5,20) design on $Z_{11} \cup \{\infty\}$ are:

$$\{0,1,2,3,8\},\{0,1,4,6,8\},\{0,1,2,3,7\},\{0,1,4,7,9\}$$

 $\{0,1,2,5,9\},\{0,1,3,5,6\},\{0,1,2,4,7\},\{0,1,2,4,\infty\},$
 $\{0,1,2,6,\infty\},\{0,1,3,6,\infty\},\{0,1,5,8,\infty\},\{0,2,4,8,\infty\}.$

The orbits of the base blocks under the action of Z_{11} are disjoint, so the 2-(12, 5, 20) design is simple, and as there is no 2-(12, 5, λ) design if $1 \le \lambda \le 19$, it is also indecomposable.

Lemma 6. There exists an indecomposable simple $2 - (14, k, \lambda)$ design for each $(k, \lambda) = (3, 6), (4, 5), (5, 20)$ or (6, 15).

Proof: We construct a rotational indecomposable simple 2-(14, k, λ) design on $Z_{13} \cup \{\infty\}$ for each of the parameter pairs $(k, \lambda) = (3, 6), (4, 6), (5, 20)$ or (6, 15).

(i) $(k, \lambda) = (3, 6)$. The base blocks of the indecomposable simple 2-(14, 3, 6) design on $Z_{13} \cup \{\infty\}$ are:

$$\{0,1,2\},\{0,3,5\},\{0,4,8\},\{0,1,3\},\{0,1,4\},\{0,1,5\},\{0,1,6\},\{0,2,5\},\{0,2,6\},\{0,2,7\},\{0,3,7\},\{0,2,\infty\},\{0,5,\infty\},\{0,6,\infty\}.$$

(ii) $(k, \lambda) = (4, 6)$. The base blocks of the indecomposable simple 2 -(14, 4, 6) design on $Z_{13} \cup \{\infty\}$ are:

$$\{0,1,2,10\},\{0,1,3,9\},\{0,1,3,10\},\{0,1,5,8\},$$

 $\{0,1,4,6\},\{0,2,6,\infty\},\{0,2,7,\infty\}.$

(iii) $(k, \lambda) = (5, 20)$. The base blocks of the indecomposable simple 2-(14, 5, 20) design on $Z_{13} \cup \{\infty\}$ are:

$$\{0,1,2,3,5\},\{0,2,4,6,10\},\{0,4,7,11\},\{0,1,3,6,11\},\{0,1,2,8,9\},\{0,1,2,6,7\},\{0,1,3,8,11\},\{0,1,4,8,9\},\{0,1,3,7,10\},\{0,1,2,6,\infty\},\{0,1,4,8,\infty\},\{0,1,4,9,\infty\},\{0,2,4,6,\infty\},\{0,1,3,11,\infty\}.$$

(iv) $(k, \lambda) = (6, 15)$. The base blocks of the indecomposable simple 2-(14, 6, 5) design on $Z_{13} \cup \{\infty\}$ are:

$$\{0,1,2,5,8,10\},\{0,1,2,5,6,11\},\{0,1,3,4,8,11\},\{0,1,3,5,6,9\},\{0,1,2,7,9,\infty\},\{0,1,2,4,6,\infty\},\{0,1,2,4,7,\infty\}.$$

Lemma 7. There exists an indecomposable simple 2-(16,7,14) design.

Proof: We construct a cyclic indecomposable simple 2-(16,7,14) design on \mathbb{Z}_{16} ; the base blocks are:

$$\{0,1,2,4,5,8,10\},\{0,1,2,3,7,9,13\},\{0,1,2,4,5,9,11\},\{0,1,2,4,5,11,13\},\{0,1,2,5,7,10,13\}.$$

It is proved ([7]) that is $q \equiv 1 \pmod{k}$ is a prime power, then there exists a (q, k, k-1)-difference family on GF(q), the finite field of order q. The construction is as follows:

Let x denote a primitive element of GF(q). Let e = (q-1)/k, $\epsilon = x^e$ and f = (q-1)/e. Let $A = \{1, \epsilon, \epsilon^2, \dots, \epsilon^{f-1}\}$, then

$$D = \{Aw^{i}/i = 0, 1, 2, \dots, e-1\}$$

is a (q, k, k - 1)-difference family of GF(q).

In fact, it can be checked that the orbits of the base blocks Aw^i ($i = 0, 1, \dots, e-1$) under the action of the additive group of GF(q) are disjoint. Thus the cyclic 2-(q, k, k-1) design obtained from this difference family is simple, so we obtain the following result.

Lemma 8. If $q \equiv 1 \pmod{k}$ is a prime power, then there exists a cyclic simple $2 \cdot (q, k, k-1)$ design.

Considering the necessary conditions of a 2- (v, k, λ) design, we obtain the following corollary.

Corollary. There exists a cyclic indecomposable simple 2 -(13, 6, 5) design and a cyclic indecomposable simple 2 -(16, 5, 4) design.

We note at the end of this section that an indecomposable simple 2-(12,4,3) design can be found in ([1]).

4. Summary

Combining the results obtained in this paper and the results previously known (see [4]), we have already completely determined the existence of indecomposable simple $2 \cdot (v, k, \lambda)$ designs for $10 \le v \le 16$ and the smallest possible λ . We collect these results in the following table. For the previously known results, the references can be found in ([4], Table 2).

Table. Indecomposable simple 2-(v, k, λ) designs with $10 \le v \le 16$.

No.	(v,k,λ)	Existence	Reference
1	(10,3,2)	yes	
2	(10,4,2)	yes	
3	(10,5,4)	yes	
4	(11,3,3)	yes	
5	(11,4,6)	yes	Lemma 2
6	(11,5,2)	yes	
7	(12,3,2)	yes	
8	(12,4,3)	yes	[1]
9	(12,5,20)	yes	Lemma 5
10	(12,6,5)	yes	
11	(13,3,1)	yes	
12	(13,4,1)	yes	
13	(13,5,5)	yes	Lemma 3
14	(13,6,5)	yes	Lemma 8
15	(14,3,6)	yes	Lemma 6
16	(14,4,6)	yes	Lemma 6
17	(14,5,20)	yes	Lemma 6
18	(14,6,15)	yes	Lemma 6
19	(14,7,6)	yes	
20	(15,3,1)	yes	
21	(15,4,6)	yes	Lemma 4
22	(15,5,2)	no	
23	(15,6,5)	yes	Lemma 4
24	(15,7,3)	yes	
25	(16,3,2)	yes	
26	(16,4,1)	yes	
27	(16,5,4)	yes	Lemma 8
28	(16,6,1)	no	
29	(16,7,14)	yes	Lemma 7
30	(16,8,7)	yes	

It is worth remarking that all the results in this paper were obtained by hand calculations.

References

- 1. R. D. Baker, Resolvable BIBD and SOLS, Discrete Math. 44 (1983), 13-29.
- 2. J. Van Buggenhaut, Existence and construction of 2-designs $S_3(2,3,v)$ without repeated blocks, Journal of Geometry 4 (1974), 1–10.
- 3. J. Van Buggenhaut, On the existence of 2-designs $S_2(2,3,v)$ without repeated blocks, Discrete Math. 8 (1974), 105–109.
- 4. H.-D.O.F. Gronau, A survey of results on the number of t- (v, k, λ) designs, Annals of Discrete Math. 26 (1985), 209–219.
- 5. H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255–369.
- 6. Dinesh G. Sarvate, All simple BIBDs with block size 3 exist, Ars Combinatoria 21-A (1986), 257-270.
- 7. R. M. Wilson, Cyclotomy and difference families in elementary abelian groups, J. Number Theory 4 (1972), 17–42.