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Abstract. The domination number 4(G) of a graph G = (V, E) is the smallest car-
dinality of a dominating set X of G, i.e. of a subset X of vertices such that each
v € V — X is adjacent to at least one vertex of X.

The k-minimal domination number I'y(G), is the largest cardinality of a dominating
set Y which has the following additional property: For every £-subset Z of Y where
£ < k and each (£ — 1)-subset W of V — Y, the set (Y — Z) UW is not dominating.

In this paper, for any positive integer k > 2, we exhibit a self-complementary graph
G with 4(G) > k and use this and a method of Graham and Spencer to construct
n-ventex graphs F for which T (P T(F) > n

1. INTRODUCTION

A subset X of vertices of a graph G = (V, E) is a dominating set if each
v € V — X is adjacent to at least one vertex of X . The domination number v(G)
(upper domination number T (G)) of G is the smallest (largest) cardinality of a
minimal dominating set of G. The reader is referred to [6] for an excellent bibli-
ography conceming the theory of dominating sets of graphs. Bollobés, Cockayne
and Mynhardt [1] generalised these concepts by extending the idea of minimality.
The k-minimal domination number I (G) is the largest cardinality of a k-minimal
dominating set of G, i.e., a dominating set Y of G with the following additional
property: For every subset Z of Y, where £ < k, and each (£ — 1) subset W
of V —Y, theset (Y — Z) U W is not a dominating set of G. We note that
1-minimality is precisely minimality and that

WG £...<THQ) LT (D) £... <G TG =T(G). )

The values of I'x (&) where G is a path or a cycle are calculated in [1, 3].
Bounds of the form (&) p(-d) < f(m) concerning the parameter of the n ver-
tex graph G and its complement G, have been called Nordhaus-Gaddum results
due to their theorem of this type concerning the chromatic number (see [8]). Sev-
eral authors have found Nordhaus-Gaddum results concerning dominating sets.
Jaegar and Payan [7] proved that for any n-vertex graph G, 7(G) 4(G) < nand
the extremal graphs for this inequality were found by Payan and Xuong [9]. In
[1], this inequality was improved to I';(G)(G) < n. Cockayne and Mynhardt

(4] showed that T (G)T (G) < ["z:ﬁ] and established the extremal graphs.
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In view of the inequalities (1) it is natural to ask for the maximum value r(n, k)
of T (G)T(G) for an n-vertex graph G. The above discussion immediately

gives
7+ 2n“

4

The determination of r(n, k) appears to be a formidable task and remains an open
question. In this paper, by explicit construction, we show that for any & > 2,
r(n, k) > n. The process involves the construction of self-complementary graphs

whose domination number exceeds any given integer k. These graphs are exhib-
ited in the next section.

usr(n,k)s[

2. THE GRAPH G,;

Let k be an integer greater than 1. In this section we exhibit a p-vertex self-
complementary graph G, ; whose domination number exceeds k. We emulate the
techniques used by Graham and Spencer [5] in their work concerning dominating
sets of tournaments.

Let p be a prime such thatp = 1 (mod 4) and V(Gpx) =0,...,p— 1 = Z,.
Two vertices a, b are adjacent if and only if a — b is not a quadratic residue of p.
The graph Gy, (i.e. two vertices a, b of Gp are adjacent if and only if a — b is
a quadratic residue of p) is called a Paley graph (see e.g. [2, p. 345]). It is easily
seen, using the transformation £ — Az where ) is any quadratic non-residue, that
Gy« is self-complementary and hence also a Paley graph. We now show that for
p sufficiently large, 7(Gpi) > k.

Theorem 1. For k > 2 and p > k*22¥2,4(Gps) > k.

Proof: Following [5], for a € Z, we define x(a) = 1(—1) if a is (is not) a
quadratic residue of p and x(0) = 0. A set A = {a1,...,ax} does not dominate
the vertex z if forall j = 1,... ,k, x(z — a;) = 1. Define g(A) by

-1 &k

oA =Y J[=[1+x(z-4p].
z=0 j=1
zgA
It is sufficient to show that g(A) > O for any A; for in this case there exists
zo ¢ A such that
k
H [l + x(zo — a,-)] >0

j=1

and hence x(zo —a;) = 1 foreachj = 1,... ,k, i.e. A does not dominate zo.
Let
p-1 &k
h(4) =Y T [1+ x(z—ap)].
2=0 j=1
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Then, exactly as in [5], we have

k &k
g(A) = h(A) = Y T [1+ x(ai — ap)] @
i=] j=1
and

p-1 p-1 &k
KA =3 1+ .Y x(z—a))

2=0  z=0 jal

p—-1
et E E x(z—aj)x(x—aj) +...

z=0 ji<j2

p—1
+E E x(z—aj)...x(z—aj) +...

220 j1<<Js

p—1
et 3 Y x(z—ag) ... x(z —ag). A3)
=0 i<..<je .
The first term of (3) is p and since G is regular of degree (p— 1) /2, the second
term is 0. Thus the analysis may proceed exactly as the relations (7)—(11) of [S]
and we conclude
h(A) >p— [(k—2)25 +1] . @

If i is fixed, 1 + x(a; — a;) = 1 for { = j and is at most 2 otherwise. Hence

k
H [l + x(a1 — a,-)]
j=1

is at most 251, It follows from (2) that A(A) — g(A) < k2*-! so that from (4)
g(4) >p— [(k=2)2%"+ 1] p—k -2+, )

It is easy to show that the right hand side of (5) is positive for p > (k2 k=12 and
k > 2,hence 4(Gpy) > k for these values, as required.

3. GRAPHS WITHT(GTk(G) > n

Let G and H be graphs of order m and g respectively, with V(G) = {v1,... ,vm}.
Then G @ H denotes the graph obtained by replacing each vertex v; of G with a
copy H; of H and each edge v;v; of G with K, ,, where the edges of K ; join the
vertices of H; to the vertices of H;.

Let V(H;) = {vi1,... ,vig}, ¢ = 1,...,m and G * H be the graph obtained
from G @ H in the following way: If v;v; € E(G) (v;v; ¢ E(G) respectively),
remove (add) the set E;; = {viv;je/€ = 1,...,q} of edges from (t0) G & H,
i,j=1,...,m. Weobserve that if G and H are self-complementary graphs, then
G * H is also self-complementary.
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Lemma 1. If v(G) > 2 and q > 2, theneach V(H;),1 = 1,... ,m, isa
minimal dominating setof G * H.

Proof: Without loss of generality we prove that V( H;) is a minimal dominating
setof G« H. Let

m
w= |J v

WUEHE)

and m
w= |J VH).

nugh(a)

Any vertex vyg in V( H;) dominates all vertices in V; except those labelled vy
for some i; hence any two vertices in V( Hi) dominate V;. On the other hand,
each vertex vig € V( H;) dominates exactly those vertices of V3 that are labelled
vy for some 4; hence V' ( H;) dominates V2 and no subset of V( H,) dominates
V,. Since (@) > 2, V2 # @ and hence V/( H)) is a minimal dominating set of
Gx*xH. 1

Lemma 2. If D is a dominating set of G  H, then at least one of the following
holds:

@ ID|>4¢;
(i) V(H;) N D & § for at least 4(G) copies H; of H in G » H.

Proof: Suppose D is a dominating set of G H such that (ii) above is not satisfied.
Without loss of generality, assume that Hy, ..., Hy, r < 7(G), are the copies
of H in G x H for which V(H;) N D # @andlet T = {v;,...,v,} be the
vertices of G corresponding to Hi,... , Hy. Since r < 4(G), there is a vertex
v, € V(G®), s > r, which is not dominated in G by T'. Hence, by the construction
of G x H, each vertex in UZ, V( H;) is adjacent to exactly one vertex of H, and
since D C U, V(H;) and D dominates H,, this implies that |D| > ¢.
We now state and prove the principal result.

Theorem 2. Let k > 2 and let p be any prime such that p = 1 (mod 4) and
p > (k2¥-1)2. Then, for any self-complementary graph H of order q > p, the
n-vertex graph G = Gpy * H satisfies T (G)Te(G) > n.

Proof: By Lemma 1, V(H;) is a minimal dominating set of G' for each i =
1,...,p. We prove that V(H) (say) is also a k-minimal dominating set. Let
S C V(H,) with |S| = £ < k and consider any R C V(G) — V(H;) with
|R|=2-1.

Then X = (V(H;) — S) URhas | X| = ¢g— 1 and does not satisfy condition (i)
of Lemma 2. Further, at most k copies of H in G contain vertices of X. Since
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Y(Gpx) > k, X does not satisfy condition (ii) of Lemma 2. We conclude that X
does not dominate . Hence V( H;) is k-minimal as asserted and I';(G) > ¢.

But n= pq, hence
TG > Vava > VAV = V.

Since G is self-complementary, T (G)T'x(G) > n. This completes the proof. §

We notice that by Lemma 2 and the construction of Gpx * H, ¥(Gpx* H) > k.
However, if y(G) < k for k > 2 and some n-vertex graph G, then no dominating
set of G with more than (&) vertices can be a k-minimal dominating set and
hence T't(G) = 4(G). By using the fact that HAT2(G) < =n(see [1]), it
follows that in this case T (G)Tk(G) <
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