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Abstract. The concept of ladder tableaux is introduced which may be considered as
a natural extension of the shifted tableaux. By means of the dominance technique, a
pair of determinantal expressions in terms of symmetric functions, for the generating
function of ladder tableaux with a fixed shape, is established. As applications, the par-
ticular cases yield the generating functions for column-strict reverse plane partitions,
symmetrical reverse plane partitions and column-strict shifted reverse plane partitions
with a given shape and with no part-restrictions.

1. Preliminaries

LetA= (1 > X2 2> ---A)andv = (v > v > --- > 1y) be two ordinary
partitions satisfying v; < ),. Denote their conjugations by X' = (A} > A5 >
o> Nyand v = (v > vh > --- > v;) respectively. The converse of v is
definedtobe 7 = (%, > ¥ > --- > ¥) whose conjugation is just ' where
U; = v_qe1 for 1 < i < r. A ladder tableau of shape )\ /v is an array T of
positive integers {T3;; U5 < j < M, 1 < 1 < r} such that the entries of T are
arranged in ascending order in each row and in strictly ascending order in each
column, i.e., tij < tigs forall; < j < A1 €9 < rand b < Ly for all
1 <4< )=V}, % <Jj < c Inthis definition, the word “ladder” comes from
the fact that if we turn over tableau T, then the shape of T is just like a ladder.
For the tableau T with n; parts equal k, its weight is defined to be a monomial
w(T) = [J=z3* which clearly makes sense for the tableaux with only one row
(column). The enumerative function for any set P of tableaux is denoted by the
weight-sum . p w(T), which is polynomial or formal power series in variables
{ze ez

In order to demonstrate the dominance technique, we need to introduce the
following functions [15): Let ex(u, v) denote the elementary symmetric function
of degree k in variables {z;}ycicy if v — 1 > k> 0. If k= 0, then gx(u,v) = 1
foru <vandeg(u,v) =0 foru>v.Ifk<0orv—u< ktheneg(u,v) =0.
Similarly, denote by h(u,v) the complete homogenous symmetric function of
degree k in variables {z;}u<j<v ifu < vand k > 0. If k = 0 then hi(u,v) =1
foru < vand hg(u,v) =0 foru > v. Ifu > vork < 0, then hg(u,v) = 0.
Analogous to those for ordinary and Gaussian binomial coefficients we have the
following summation formulas.
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Lemma 1.1.

i Y meer(u,v) = epi(u,m) — eper(u,m) (11)
m<u<n

i) zuhe(u,v) = hea(m,v) = heer(n,v) (12)
m<u<n

Proof: The generating functions for {ex(u,v)} and {hi(u,u)} with respect to
the subscript k are respectively given by

E(u,v) = Y ex(u,v)zf = ] (1+ zz)

k>0 u<i<y

and
H(u,v) = Ehk(u,v)z" = H (1 -z:'cj)“.

k>0 u<j<y
Then (1.1) and (1.2) follow from the expansions of

3 zE(uv) = Y, 2H{B(u,v+ 1) - E(u,v)}

mgv<n m<u<n

2 Y {E(u,m) — E(u,m)}

and
3 mH(uw)= Y 27 {H(u,v) - H(u+ 1,v)}
mgu<n m<u<n
=z~ {H(m,v) — H(n,v)}
respectively. |

Based on identities (1.1-1.2), the next two sections will establish the gener-
ating functions of flagged ladder tableaux as determinants in terms of elementary
symmetric functions e;(u, v) and complete symmetric functions hy(u, v). Natu-
rally, these determinantal expressions have resemblance as those for ordinary and
skew tableaux with flags.

2, Row-Flagged Ladder Tableaux
Now we consider the row-flagged tableaux [15]. Denote by S, /;(t; b) the gener-

ating function for the ladder tableaux of shape ) /v with row flags t and b (i.e., the
entries of ith row are bounded below by ¢; and above by b;) in which ¢; becomes
the first entry on the ith row of the augmented tableaux if attaching the flag ¢ to
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the left of the original ones. It is obvious that the ladder tableaux enumerated by
8, /(¢ b) consist of the entries {T} which satisfy the following condition:

<<t ~ <0G~ ~ <--

'&

~< <l

S ST 3 s na Lo+l
A A A A A A A
t2 &, mlS“- < ;'<t T RO FEC SWIL IR C RN )
A A A A
A A A (T
LSt~ LK $ by

ruptl=

2.1)

For each tableau T" with the restriction of (2.1), it can be regarded as a formal

product of its successive columns T, , | < T ,, < --- < T, after having defined

an order relation “<” on column-tableaux: T < T" if and only if the array formed
by two columns is a ladder tableau. Thus S, /;{ t; b) can be expressed as

SV COLIDY

T~ S y,+1$ Sn‘

w(Ts VW) (D) (22)

where the summation runs over all T restricted by (2.1). This separation suggests
the following recurrence.

Lemma 2.1. S, /;(t; b) can be generated from the reverse recursive relations
(where ¢ := Xy and e := 1) ).

Initial condition A

Uet1(Te) = U1 =11
Recurrence relation

UTe-) = )

T} subject to (2.1)
(k=c¢cc—1,---,e+ 1)

Final step

SA/;(t; b) = Uenr. ]

W(T) Uke1 (T | 23)

To carry on recursion (2.3), it may be convenient for one to add a natural
restriction on row-flags as follows:

<t pe1ppn<e - Sty <h

0 <ticta<--- <ty
Al Al Al
bi<br< -+ <by 24)
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Notice that the matrix [ h;_;. ;\,_A,(t, 0 D7) h<ij<r eing strictly lower uni-
triangular coincides with the fact that b is an upper row flag of T". Since recurrence
(2.3) is restricted by table (2.1). Multiplying U by determinant

Td?(tf [ hi—j-!-k,—x.'(tl')ub)') ] =1

will gives that
= det ztiphi—ﬂlx—)q(ti,cnbj)] 1< >‘::
Ue(Te-1) E T [ hijex;-2(tinis b)) | Mo <igr
tie < tae < o<ty by
vi v vI
b1 f26-1 o0 tyren
2.5)

If performing the summation with respect to ¢; ., the ith row of the determi-
nant in (2.5) becomes, by (1.2),

hicjer—as1(ticm1,0;) — hijerais1(Bivr e, b)), 7=1,2,---,m.

Thus multiplying the (i + 1)th row by z;, ' . and adding to the ith row, the latter
reduces to

hijar-at1(ie-1,b), F=1,2,---,r

Performing the operations in this way with subscript i from 1 to A; we finally
arrive at

det | Bicjer;—nir1(Bic b')] 1<i<)
T )= 43 g=xiv1 (i1, 0; c 26
UC( € l) Txr [ hi—j-ﬁ);—)q(tl‘.)‘nbj) X:: <1 S T ( )

For the recurrence (2.3) if zy,,, being absorbed in the ith row of determinant (2.6),
then the similar manner yields

det hi_jerng—niv2 (Bic-2,b5) 1’S i< A
UTe1) = rxr h;_j+x;-x;+l(ti.c-2,bj) de<igr
hicjeaz=xi(tin, by) Mg <igr

Repeating this process (¢ — e) times on recurrence (2.3), the intermediate
results are demonstrated as follows:

det | hijon-n (i, by) 1<i<k _
UMN(TM) [ ht—)ﬂ,—)\;(tw\.: b)) k<ilr (k - 1'2, 'T)

- Y = det c—;+ki—vk(tt,ug 1<i< k = —1.---.1
ka+l(Tw‘) Txr [ h —)+5/—V6(t” ) k < i<r (k nT ’ ’ )

Thus we ultimately obtain the following
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Theorem 2.2. The enumerative function for the ladder tableaux defined by table
(2.1) is given by flagged-Schur function
. det
Sx/';(t, b) = £%r [hi-jﬂj—;}(t" b)].

Remarkably, if replacing inverse partition by a ordinary partition 4, then
S/u(a; b) coincides with the generating function of skew tableaux of shape M
with row flags a and b (cf. sec. 5.4.5 in [5] and [15]).

27

3. Column-Flagged Ladder Tableaux

Without loss of generality we will assume that 7, = 1 in this section. Define
the sequence tVh = (1,12, -- ,v;';b;”,b;;*z,- -+, be) by (1V b), equal ¢, for
1 < k < 7, and b for U, < k < c respectively, where ¢ = A; as in lemma 2.1.
Denote by S, /;( a;tVb) the generating function for the lader tableaux of shape
\/7 with column-flags a and tV'b (i.e., the entries of column ; are strictly bounded
below by a; and above by (tV'b);) in which ¢; becomes the last entry on the jth
column of the augmented tableaux if we regard ¢ as complements to the original
tableaux. Hence the ladder tableaux enumerated by S, /;( a; tVb) consist of the
arrays {T'} subject to the conditions (where it is convenient for one to attach a

redundant column a; < t1)):

a1 a2 o;l o;” a; o;” Gy, G+l Gx; Gx+l
A A A A A A A A A A
t1<h2< - Stxz Stl;vls gtl;gtl:;ﬂ <Ly, Shpe1 < Sy St gl
A A A A A A A A A
2 <Kl Sty (S0 SQ;S‘Z’;HS e Ko, K2 p 41K - Kl yy  bagel
A A A A A A
‘;201 b)‘z
A A A A
e St Sooe Sty by
A A
> o b;; (T)
3.1

Notice that each tableau T defined by (3.1) can be considered as a formal
product of its succesive rows T} < T3 < -+ < T, after having defined an order
relation “<” on row-tableaux: T < T" if and only if the array formed by two rows
is a ladder tableau. Thus S, /;( a; tVb) can be represented as

>

N<T <<Ty

where the summation runs over all T subject to (3.1). This expression suggests
the following

8, aitVh) = w(T)w(T3) - - w(Ty) (32)
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Lemma3.l. S, /;( a; tV'b) can be derived recurssively from the iterative process:

Initial condition (wherety; = t1) )

Vo(T) = % [ej-ia;, 101 =1
Recurrence relation

ViTe) = Y, w(T)Vi-i(To) | (33)

T, subject to (3.1)
(k= l’2|'°' )T)

Final step

Sy(aitVh) =V, )

By means of (1.1), manipulate on the determinant with respect to each row
T} from right to left in reccurrence (3.3). The exactly same procedure as that for
(2.7) demonstrated in the last section will produce the dual proposition of theorem
2.2 as long as column-fiags satisfy the following conditions

a1 << - L@ u.<°u,+1< - <@,
A A /\ A A
t1<te< - Lty by K- <be (34)

In fact the restriction on ¢V b can be replaced by more natural ones

tk+‘ﬁ;¢£tg+1+§;‘+| (1<k<wm)

3.5
bk-xzsbhl—)‘,kﬂ (nh<k<Lo) 3:3)

which come from the considerations for the extreme cases of comer-hooks.

Theorem 3.2. With column-fiags defined by (3.4) (resp. tV'b by (3.5)), the gen-
erating function for the ladder tableaux of shape \[v with column-flags a and
tVb is given by '

N CIOER: T CRRA NGB (36)
When v = 0, this determinant reduces to the flagged Schur function [15].

4, Applications to Column-Strict Reverse Plane Partitions

To discuss the enumeration problems of reverse plane partitions, we first recall
some identities about Schur functions which may be refered to [8], {9], and [12]).
For§ = (r— 1,7 —2,---,1,0) and partition X\ = (A1, X2,- -+ ,),) defined in
Section 1, Schur function has a quotient expression in determinants:

“)4'5(:51)220" ’ )z!’)
as(Z1,%2,- - ,Tr)

S(31,32,+ ,Tr) = S%e [hj_ien(1,7)] = @.1)
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where the skew-symmetric function is defined by

O(o ) (T1, 32,70, Zp) = ggtr [:z:;-"] 4.2)

Further, there is a beautiful identity on the summation of Schur functions.

Yoz, m) = [J(-a0 [ A-mzp)™ @3
A

1<kgr 1<i<j<r

where the summation runs over all partitions with at most r parts.

Firstwe letv = 0,¢; = 1 and b; = nin (2.7). Then S, /;(t; b) reduces to the
Schur function S\(x) = detyxy [ hj—i+s,(1,n) ] which enumerates the column-
strict reverse plane partitions of shape )\ with all parts < n. From (4.1) it is easy
to deduce the following

Proposition 4.1,
8(a, gt -+ g™ = g TT {nr o)) »
79,9 M =q g (h(z)) @4
where (x) = 1 — ¢* and other notations are as in 9, p. 27].

There are extensive literatures concerned with this topic. The interested read-
ers may refer to [4-5], [7-10], [11-12] in which Remmel & Whitney have pro-
vided a lattice path proof in [11] recently.

Next, we puto; = 1, b; = coand a; = A —k+ 1 in (2.7). Then the generating
function for shifted reverse plane partitions of shape « is equal to

Pie)= ) {Qi‘r[h,.,-l(t.-.aoo)lﬂzt,}
zi=g}

1<t <ta <<ty k=1

o
E o [ (q:q;,.;q

1<t <ta <<ty

n

where (2 : ¢)y = []p.; (1 — zg*~!). Define |m| = Y L., m; for vector m =

(mi,ma,--- ,m,) and n(m) = Y ., (k — 1)m,. Thus a simple replacement
gives that
g*! .
Pu(g) = D oues(g™, g™, 0, q™)

ngisr(q ! D1 1 Dp2 Doy 20

By means of (4.3), this summation can be simplified as
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Proposition 4.2,
q'“l"'ﬂ(“) (a'. — a))

This result is consistent with Gansner’s ([4, Corollary 7.2]) where he derived
the result using the Hillman-Grassl correspondence.

A shifted reverse plane partition T' of shape « is called a standard shifted
tableau (SST) if the entries of T consist of just 1,2,--. ,|a|. According to the
statements of Stanly ([13, Corollary 5.1-5.4]) the number of SST of shifted shape
a is equal to (cf. Macdonald [9, p. 135])

1 Pa(a) (it = ( gy o

al’az’--c ’a

Po() = 4.5)

oy — 5
a; + aj

) 4.6)
T/ agicigr

PR . . .
where (M ¥ ™ + % ) denotes the multinomial coefficient.
n,NM, ", %%

Finally, we set ; = i, b; = oo and a symmetric partition (s > a2 > --- >
arl@1 > a2 > --- > a,) in Frobenius’ notation [1]. It follows from (2.7) that
the generating function for symmetrical reverse plane partitions of shape (ala) is
given by

Quw(@= 3 a0 {Hr [hayition o= Yt

1<t <tz <<ty k=1

where a simple transform has been made from the strict partitions to the ordinary
ones. Then it is obvious that

Q(ala) ()= q—2n(a)—(z)
O<ti<tz <<ty

By means of (4.1-4.3) this can be simplified as follows

2|a|—25(a)+r—( ')

q 2 E 2o+l  2a,0+1 2+l

l-Ir (qz,az)— a,,,+5(q Il ' q a1t Y] at )
k=133 ek S > e 0

_ q'r+2|a|H (38)a_ (2(i — o))
(@ 9o | g (it oy + 1))

q(2¢y+ Ny ]
(4%3 %)

Q(ula) ( Q)l=

This gives the followmg
Proposition 4.3, Let )\ = (ala) be a symmetric partition. Then we have

RORP) | ((""’ b AAw o) @)

ko1 q; 9)2m,+1 1<i<igr (2(0; +aj+ l))

An alternative version of this statement in terms of hooks is obtained by
Gansner ([4, Corollary 6.2]).
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5. Concluded Remarks

On account of the fact that the concept of ladder tableaux is a natural extension
to that of shifted tableaux, one can develop the related notions similar to the cases
for ordinary tableaux.

From the ordinary and Gaussian binomial coefficients to elementary and com-
plete symmetric functions, the “dominance method” described in section 2 and 3
may be viewed as a kind of formalization of the technique successfully used by
Andrews [1] and Carlitz [3] to treat the counting problems of plane partitions. To
make the presented technique carry into execution, two algebraic idenddes (1.1)-
(1.2) play the vital role. From section 4 one can notice that the arguments demon-
strated by dominance technique possess a nice flexibility in applications. A pair of
intriguing open questions is whether there exist simple closed product expressions
for the generating functions of shifted tableaux and symmetrical reverse plane par-
titions with the fixed shapes and the part-bounding.
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