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Abstract. In this paper we drive some inequalities which the parameters of a two-
symbol balanced array T (B-array) of strength four must satisfy for T’ to exist.

1. Introduction and preliminaries.

Definition: A balanced array (B-array) T of strength four, with two symbols, with
m constraints and N treatment-combinations (runs) is a matrix 7' (m x N) with
two symbols (say, O and 1) such that in every (4 x N) submatrix T* of T, the
following condition holds:

Mas T = MP(2); T
where \(a; T™*) denotes the frequency with which (4 x 1) vector ¢ appears in T,
and P(g) is a vector obtained from o by permuting its elements. If o is a vector
withi 1's(1=0,1,2,3,4) init, then
Ma;T*) = MP(@);T") = p;  (say)

and the vecwrp = (o, b1, B2, 43, b4 ) is called the index set of the array T', and
the B-array is sometimes denoted by T (m, N,t = 4,5 = 2; u'). The following

result is qune obvious
3=0

B-arrays have been found to be quite useful in the constructions of factorial de-
signs, and tend to unite various branches of the combinatorial theory of design
of experiments. For some literature on B-arrays in general and their usefulness,
the interested reader may refer to the bibliography given at the end, and further
references included therein,
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2. Inequalities for the existence of balanced arrays.
It is easy to establish the following results.

Lemma 2. A B-amrayT of strength four with index sety' = (po, ph1, b2, 43, $44)

is also of strengtht' < 4. Considered as an array witht' = 3,2, and 1 the index
sets u* are respectively given by (Ao, A1, Az, A3),(Bo, B1,B2), and(Co,C1)
where

1 1 2 3
Aj= E (i)ﬂ'iﬁ. B;= E (i)l‘iﬂ,
i-0 §=0
and
2. /3
Cj = E (i)#iq‘.
i=0

Lemma 2.2. Letz;(0 < j < m) denote the number of columns withj 1°sina
B-amayT witht = 4. Then the following must hold:

Yozi=N @1
Jj=0

> iz =mC 2.2
i=0

Eizxj =m(m— 1)B2 + mC, 2.3)

N Pzi=m(m=-1)(m-2A3+3m(m-DB+mC  (24)

> itz =m(m = 1)(m—2)(m-3)us
+6m(m—1(m—-2)A3 + Tm(m—1)By + mC).

Next we state two main results of this paper, briefly sketch their proofs, and
illustrate their usefulness.

2.5)

Theorem 2.1. Consider a B-array T (m,t = 4,s = 2, u'). Then we must have

am’+bm?+cm+d>0 (2.6)

where a, b, c, and d are polynomials of degree two in p; ’s.

Proof outline: Applying the following inequality to

(Eizz;)z < (X i) (=)
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to (2.1), (2.3), (2.5) and after some simplification, we obtain (2.6), where

a=Nps — B2, b=6Nu3s —2B1By, c= N(Tpz —4p3) - B2,
and

d=N(pr —4p2 +p3).

However, if we apply the inequality

(Er=) < (Si's) (=)

to (2.2), (2.4), and (2.5) then we obtain, after some simplification, the following
result:

Theorem 2.2. For a B-array T with index sety' andm > t = 4 lo exist, the
following must hold
amP+bmt+cm+d>0 @7

wherea = paps — p3, b= 5p3 + paps — 3papa + prpa, ¢ = 4p2(us + pa)
+4p3(p1 — p3) —palpr + p3) —2p3, andd = 83 + 2pa (p1 + p3) —dpapa.

Remark: The above two results (2.6), (2.7) are quite useful in checking the exis-
tence of a B-array T with a given m and ', and also in obtaining an upper bound
on m fora given p'.

Here we must stress that B-array T may not exist even if its parameters sat-
isfy (2.6) and (2.7). However, we can be certain of the nonexistence of T if its
parameters contradict either (2.6) or (2.7).

Example 1: Take u' = (1,3,3,1,0), and we apply (2.7) to it. Herea = —1,
b=5,c=2,andd=84. Wehave —m> + 5m? + 2m + 84 > 0.

It can be easily checked that the above inequality is contradicted at m = 8
for the first time. Thus m & 8, hence the largest value of m for which T' with
#'=(1,3,3,1,0) can possibly existism = 7.

Example 2: Consider T with ' = (1,2,5,2,1), and we check the application
of (2.6). Herea = —52,b = 296, c = 1100, and d = —768. The polynomial
inequality is —52m3 +296 m? + 1100m — 768 > 0. This polynomial inequality
is checked to be contradicted for m = 9 but not for m = 8. Thus, an upperbound
onmis=8.

Remark: Conditions (2.6) and (2.7) are necessary conditions, and a computer pro-
gram can be easily prepared for checking (2.6) and (2.7) for any given list of B-
arrays.
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