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Abstract. We give a general construction of a triangle frec graph on 4 p points whose

complement does not contain Kp+2 — € for p > 4. This implies that the Ramsey
number R(K3, Kx — €) > 4k — Tfor k > 6. We also present a cyclic triangle free
graph on 30 points whose complement does not contain Ko — e. The frst construction
gives lower bounds cqual to the exact values of the corresponding Ramsey numbers
for k = 6,7 and 8. The upper bounds are obtained by using computer algorithms. In
particular, we obtain two new values of Ramsey numbers R(K3,Ks — e) = 25 and
R(K3, K9 —€) = 31, the bounds 36 < R(K3,Ki0 —e¢) <39, and the uniqueness
of extremal graphs for Ramsey numbers R( K3, K¢ — ¢) and R(K3, K7 — e).

1. Introduction and Notation

The two color Ramsey number R(G, H) is the smallest integer n such that for
any graph F on n vertices, either F contains G or the complement F contains H.
In this paper we consider the case G = K3 and H = K — e, the complete graph
K minus an edge. Table I contains the values of some related Ramsey numbers.
The entries of the first two rows are given by easy equalities R( K3 —e, Ky —e€) =
2k —3 and R( K3 —e, K}) = 2 k— 1, which can be derived by a straightforward
reasoning. The value 21 of R( K3, Ki—e) for k = 7 was obtained by Grenda and
Harborth in 1982 [5], where the authors list also all the values for k < 6. Recently,
McKay and Zhang have calculated R( K3, K3) = 28 [7], other references for the

classical case R( K3, Ki) can be found in [6], (7], [8], [9].

k
G H
3 4 5 6 7 8 9 10
3 5 7 9 | 1M |13]|15] 17 |Ks—elKi—e
5 7 9 | 111311517 ]| 19 |K3—e| K&
5 7 {11 ] 17|21 25313639 Ki |Kr—e
6 9 |14 | 18 | 23 | 28 | 36 |40-43| K; K;

Table 1. Four related types Ramsey numbers R(G, H)
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All the graphs considered here are triangle free. Throughout this paper we
adopt the following notation:

G— complement of graph G
(G, H)-good graph F—graph F does not contain G and F does not contain 5
(G, H,n)-good graph — (G, H)-good graph on n vertices
Kp — e—complete graph on p vertices without one edge
G = H —graphs G and H are isomorphic
e(@G, H,n) —minimum number of edges in any (G, H, n)-good graph
E(@, H,n) —maximum number of edges in any (G, H,n)-good graph
GI[ S]—subgraphs of graph G induced by the set of vertices S
Cp—cycle of length p

2. Constructions

Construction 1: For p > 1, let G, = (Vj, Ep) be the graph on 4p vertices
defined by:

4
V= UX,-, where X; = {zis : 1 < n< p}, and
i=1
Ep={{zin)zi+l,m}:i=l,3s lS"‘,mSP, ﬂ#m}u
{{xl'mxjn} 1= 1:2)j= 3s4: 1 S "S p}

Observe that G, is a regular graph of degree p + 1 and that the induced graphs
Gpl X1 U X3] and Gp[ X3 U X4] are isomorphic to the complete bipartite graph
Kpp with a 1-factor deleted. We say that vertex x;, is on level n. The set V, is
formed by p levels, each of them inducing a Cy in Gy, in particular G = C4. We
leave for the reader, as an easy but interesting and time consuming exercise, to
show that the graph G4 on 16 vertices is isomorphic to the well known extremal
graph related to the Ramsey number R(3, 3, 3), which has vertices in GF(16)
and edges connecting points whose difference is a cube [4].

Theorem 1. The graph Gy is a (K3, Kpv2 — €,4p) -good graph forp > 4.

Proof: One can easily verify that G has no triangles. Let S be any set of vertices,
S C V,, |S| = p+ 2. We will show that for p > 4 the induced graph G,[ S] has
at least two edges. If S has at least three vertices on the same level, then G,[ S]
has clearly at least two edges; otherwise S has at least two levels n and m with
two vertices, say a and b on level nand c and d on level m. Sincep > 4, S has at
least two more vertices, u and v, on other levels. Suppose that Gp[ S] has at most
one edge. Then without loss of generality we can assume that u is not connected
to any vertex in {a, b, c,d} and u € X3. Hence {a,d,¢,d} C X; UX,; UX; and
one can easily check that G,[ {a, b, c,d}] has at least two edges. 1

138



Corollary 1. R(K3,Ky—e) >4k—T7 fork 2> 6.
Proof: Using Theorem 1, the lower bound is established by the graph Gx-2. 1

Construction 2: Define graph H = (Z3o, E) by
E={{i,j}:4,j €Zao, §—j==%1,43,+9,£14}.

It is not very difficult, but again tedious, to check that the graph H is trian-
gle free, has exactly 30 independent sets of size 8, namely the neighborhoods of
vertices, and finally two different neighborhoods intersect in less than 7 points.
Consequently the graph H does not contain Ky — e, since the opposite would
imply the existence of two independent sets of size 8 intersecting in seven points.
Thus we can formulate the next Corollary.

Corollary 2. R(K3,K9 —€) > 31,

3. Enumerating small Graphs

In [8] the construction of a data base of all triangle free graphs with maximal
independent set of size not larger than 5 was reported. This data base contains all
(K3, Ki — €)-good graphs for k < 6. These were extracted and the number of
them is shown in the following tables for k = 3,4,5 and 6. A blank entry inatable
denotes 0. Note that the values of e( K3, K — e, n) and E( K3, K —e,n) canbe
easily read by finding the location of the first and last nonzero entries in column n
of the corresponding table. Observe also that G is the unique ( K3, K¢ —e, 16)-
good graph.

edges| number of vertices nftotal
e 1 2 3 4
0 1 1 2
1 1 1
2 1 1
3 0
4 la | 1

total | 1 2 1 1 5

Table II. Number of ( K3, K3 — e)-good graphs

The graphs contributing to the entries of Table II were constructed indepen-
dently by hand. The correctness of the data in Tables III, IV and V was double
checked by running extension algorithm used in the next section, i.e. the set of
graphs obtained by extraction from the data base of ( K3, Ki)-good graphs was
identical to the set of ( K3, K — €)-good graphs obtained by consecutive exten-
sions followed by elimination of isomorphic copies of graphs. We also observe
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that column 10 of Table IV corresponds to Lemma 2 in [1], likewise the graph
G4 was also identified as a ( K3, K¢ — e)-good graph by Faudree, Rousseau and
Schelp in {2] and it is represented by a 1 in column 16 of Table V. Finally we note
a “curiosity” in column 10 of Table IV, namely the nonexistence of (K3, K5 —
e, 10) -good graphs for 16 < e < 19 edges. This is the first such hole known to
the author (for additional data see [8], [9]).

In Tables II-VI some particular graphs of special interest have been marked
as follows: ¢ — square K2 2, b— K33, c— Ka 4, d — graphs from Lemma 2
in (1], e — Petersen graph, f — Ks 5, g — graph on GF(16), {i,;} € E iff
i—j = 2z, isomorphic to G4, and h — unique ( K3, K7 — e,20)-good graph
found by Grenda and Harborth in [5], isomorphic to G's.

edges number of vertices n total
e 1 2 3 4 5 6
0 1 1 1 3
1 1 1 2
2 1 2 3
3 2 2
4 1 2 3
5 2 2
6 1 1 2
7 1 1
8 1 1
9 15 | 1

total | 1 2 3 5 5 4120

Table III. Number of ( K3, K4 — e)-good graphs

4. Extensions

The system of algorithms with their implementations to construct all ( K3, K, n)-
good graphs with e edges was described in [8] and used extensively in [9]. This
technique requires the previous knowledge of all ( K3, K1, %) -good graphs with
€ edges, for @ < nand € ranging over the set of values, which can be determined
by the method of Graver and Yackel [3]. The key to this method in our case is
contained in the following Lemma.

Lemma 1 (variation of proposition 4 in Graver and Yackel [3] - 1968). For any
(K3, K — e, n)-good graph G with e edges

k-1
A= M—Zm(e(Ks,Kk-1 —e,n—i—1)+i%) >0,
i=0
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edges number of vertices n total
e 3 4 5 6 7 8 9 10
0 1 1 1 1 4
1 1 1 1 3
2 1 2 2 5
3 2 3 1 6
4 1 4 4 9
5 2 1 9
6 1 7 5 13
7 4 8 12
8 2 12 2 16
9 1 8 5 14
10 1 14 16
11 1 12 13
12 1 10 1 12
13 4 1 5
14 2 3 5
15 1 1 1de | 3
16 1c 1 2
17 0
18 0
19 0
20 1d | 1

total | 1 2 3 7 12 26 39 49 7 2 {148

Table IV. Number of ( K3, K's — e)-good graphs

where n; is the number of vertices of degree i in G, n = Yoo n; and 2e =
k-1

i=0 M.

Lemma 1 gives reasonable lower bounds fore( K3, K —e, n) provided good
lower bounds for e( K3, Ki._) —e,m—1i—1) are given. Furthermore, it permits the
design of extension algorithms based on the ones used by Grinstead and Roberts in
1982 [6] to evaluate R(3,9). Similarly as in [8], [9] we have implemented these
algorithms for the case of ( K3, Ky — e€)-good graphs and they have produced the
results gathered in Tables VI and VII.

Letex(n) = e( K3, K —e,n) and let Ny(n, e) be the number of nonisomor-
phic (K3, Ky — e, n)-good graphs with e edges. Table VI presents all nonzero
values of e7(n), and N7(n, e) for some values of n and e. Table VII contains
similar data for (K3, K3 — e, n)-good graphs. In the case of (K3, K7 — e, n)-
good graphs we have found all of them for n > 18: there are 225 such graphs for
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number of vertices »

odges

¢ |1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16| total
o [1 1 1 1 1 3
1 1 1 1 1 4
2 1 2 2 2 7
3 2 3 4 1 10
4 1 4 717 5 1 18
5 2 9 1 1 23
[ 1 7 19 10 ST
7 4 20 25 1 50
s 2 18 51 10 81
9 1 1 e 109
10 5 6 97 3 165
1 1 88 167 1 217
12 1 21 195 70 287
13 9 150 204 363
u s 92 38 2 485
16 2 42 45 23 512
18 1 2 384 110 495
17 8 217 261 436
18 3 1u1 sS4 3 491
19 1 5 33 9 390
20 1 22 26 44 283
21 10 101 0 182
22 + 4 s 131
23 2 12 58 70
2% 1 4 31 2 4
25 v 1 22 5 )
2 13 8 21
27 6 5 1
28 2 2 4
29 1 1
30 2 2
31 2 2
52 0
33 0
L] 0
35 1 1
36 0
87 [}
38 [
L) 0
40 19 1
total |1 2 8 7 14 38 92 286 820 1903 1475 350 22 4 1 1 | 5017

Table V. Number of (K3,K¢—e)-good graphs

142




n = 18 with the number of edges ranging from 43 to 51, and unique graphs for
n= 19 and 20. The graph Gs is the unique ( K3, K7 — e, 20) -good graph and ob-
viously it is isomorphic to the graph defined by Grenda and Harborth in [5]. Also,
there exist a unique ( K3, K7 — e, 19)-good graph, which can be obtained from
G’ by the deletion of one vertex. The nonexistence of a ( K3, K3 — e, 25)-good
graphs implies, by Corollary 1, that R( K3, K3 —e) = 25. We note that G has 84
edges, thus it is not a minimum graph. For further calculation of R( K3, K9 — €)
we need only the graphs in column n = 22 in Table VII and the values of eg(n)
for22 <n< 24.

e number of vertices n
No(ne) |7 8 9 10 11 12 13 14 15 16 17 |18 19 20
e7(n) 2 3 4 5 8 11 15 19 24 30 37 |43 54 60
Ni(ne) 2 1.1 1 1 1 1 1 2 3 112 1 1k
er(n) +1 6 9 12 16 20 25 31 38 |44
N7(n,e) 1 3 8 16 13 14 22 54| 8
er(n) +2 26 32 39 |45
Ni(n,e) e 305 361 349 | 38
er1(n) +3 33 40 | 46
Nj(n,e) ... 3251 1070} 61
er1(n) +4 47
Ni(n,€) ... |58
er(n)+5 48
N7(n,€) 36
er1(n) +6 49
Ni(ne) 17
er(n) +7 50
N7(n,e) 4
er(n) + 8 51
Ni(n,e) 1

Table V1. Number of ( K3, K7 — e, n)-good graphs

Theorem 2. R(K3,Ks —e) =25 and R(K3,Ky — e) = 31.

Proof: Corollaries 1 and 2 establish that 25 and 31 are lower bounds for R( K,
K3 — e) and R( K3, K9 — e), respectively. The fact that these values are also
upper bounds follows from the calculations described above. For example, to
prove R( K3, K9 — e) < 31 assume that G is a (K3, K9 — e,31)-good graph
with e edges. Then G can have vertices of degree 6,7 and 8, and by Lemma 1 we
have:

A = 3le—(ng(36+80)+n7(49+70) +ng (64+59)) = 31(e—116)—3m;—Tng > 0

143



There are three solutions in nonnegative integers for the latter, which are listed
in Table VIII. One can easily conclude that G must be an extension of a ( K3,
Kg — e,22)-good graph with 59 or 60 edges. There are 15 such graphs (see
column 22 in Table VII). Running extension algorithm on these graphs did not
produce G. Thus R( K3, K9 —e) < 31. [ |

e number of vertices n
Ng(n,e) 19 20 21 22 23 24
es(n) 37 44 51 59 70 80
Ng(n,e) | 220 >169 7 2 1 1
eg(n) +1 52 60 71 81
Ng(n,e) >375 13 2 0

Table VII. Number of ( K3, K3 — e, n)-good graphs

n§ n7 g - e A
0 0 31 (124 31
1 0 30 |123 7
0 2 29 1123 8

Table VIII. Theorem 2
Using only Lemma 1 and Table VII we obtain:

e(K3,K9 —e,30) > 111,
e(K3, K9 —e,29) > 100, and
e(Ks3, K9 —¢,28) >90.

The latter inequalities and Lemma 1 imply the nonexistence of a (K3, K10 —
e, 39)-good graph, hence R( K3, K10 — e) < 39. If we could prove e( K3, K9 —
e,28) > 90 then R(K3,Kio — €) < 38. We have 36 = R(K3,K9) <
R(K3, K10 — €), so the lower bound also seems to be weak. There exists a good
chance to calculate the exact value of R( K3, K10 — €)! We conclude by stating
the following Theorem.

Theorem 3. 36 < R(K3,K10—€) <39.
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