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Abstract. In this paper, we prove for any even intger m > 4 that there exists a nested

m-cycle system of order n if and only if » = 1 mod 2m, with at most 13 possible
exceptions (for each value of m). The proof depends on the existence of certain group-
divisible designs that are of independent interest. We show there is a group-divisible
design having block sizes from the set {5,9,13,17,29,49}, and having u groups of
sized,forally >5,u+#7,8,12,14,18,19,23,24,33,34.

1. Introduction

Let G be a graph, and let m > 3 be an integer. An m-cycle decomposition
of G is an edge-decomposition of G into cycles of size m. We will write the
m-cycle decomposition as a pair (G, C), where C is the set of cycles in the edge-
decomposition. An m-cycle decomposition of K,, will be called an m-cycle sys-
tem of order n. Of course, a 3-cycle system is a Steiner triple system; these designs
exist for all orders n= 1 or 3 modulo 6.

We will say that an m-cycle decomposition, (G, C), can be nested if we can
associate with each cycle C € C a vertex of G, which we denote f(C), such
that f(C) ¢ V(C), and such that the edges in {{z, f(C)} : z € V(C),C €
C} form an edge-decomposition of G (where V(C) denotes the vertex set of the
cycle C). Alternatively, we can view a nested m-cycle decomposition as an edge-
decomposition of the multigraph 2G into wheels with m spokes, where every
edge occurs in one wheel as a spoke and in one wheel on the rim.

In this paper, we are interested in nested m-cycle systems for even values of
m. Itis easy to see that a necessary condition for the existence of a nested m-cycle
system of order n is that n = 1 mod 2 m. The first examples of nested m-cycle
systems to be studied in the literature were nested 3-cycle systems (i.e., nested
Steiner triple systems). It was proven by Stinson [10] that there exists a nested
Steiner triple system of order = if and only if n = 1 modulo 6. More recently,
Lindner, Rodger and Stinson [7] showed for each odd m > 3 that there exists a
nested m-cycle system of order n if and only if n = 1 modulo 2 m, with at most
13 possible exceptions.
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Much less is known regarding the existence of nested m-cycle systems for
even values of m. In the smallest case, m = 4, it has been shown by Stinson
[11] that the necessary condition n = 1 mod 8 is sufficient for existence, with at
most 6 possible exceptions. In this paper, we prove for any even m > 4 that there
exists a nested m-cycle system of order # if and only if n = 1 mod 2m, with at
most 13 possible exceptions.

We prove the result when m is not a power of two in Section 2. For m a
power of two, the proof is given in Section 3; the proof depends on the exis-
tence of certain group-divisible designs which are constructed in Section 4. The
group-divisible designs we construct are of independent interest; we show there
is a group-divisible design having block sizes from the set {5,9,13,17,29,49},
and having u groups of size 4, for all but a few values of u (see Theorem 4.14).

2. Cycle lengths not a power of two

The construction we use for cycle lengths which are not a power of two depends
on certain nested cycle decompositions of complete multipartite graphs. We will
denote the complete multipartite graph having u parts of size ¢ by K(v). Also, we
refer to the parts as holes.

Lemma 2.1. Suppose there is a nested m-cycle decomposition of K. Let
k > 1. Then there is a nested (km) -cycle decomposition of K(ktys.

Proof: Replace every vertex v of Ky by k independent vertices, (named v;,
1 < i < k), thereby constructing K((ktys). Let (K(es), C) be an m-cycle decom-
position of K, and let f be a nesting of C. Each cycle C € C corresponds to
a subgraph of K(t)=) isomorphic to the Cartesian product C ® ( K)“ (i.e. each
vertex of C is replaced by k independent vertices, and each edge is replaced by k?
edges forming a complete bipartite graph K i). It is well-known that the graph
C®( K)* has an (mk) -cycle decomposition (this is a decomposition into Hamil-
tonian cycles; see [4] or [6]). The number of (mk)-cycles in this decomposition
is k. Suppose these cycles are named C;, 1 < i < k. We define a nesting by
associating with each C; the vertex f(C);. If we do this for every cycle C, we
obtain the desired nesting. |

We shall employ the following known class of nested m-cycle decomposi-
tions of K((2m)e).

Lemma 2.2. Suppose m > 3 isodd,n=2um+ 1,and u ¥ {1,2,3,4,6,
22,23,24,26,27,28,30,34,38}. Then there is a nested m-cycle decomposi-
tion of K((2m)s).

Proof: This follows from Theorem 2.2 and Theorem 3.1 of [7]. 1

We also use the following class of nested cycle systems which are constructed
by difference methods.
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Lemma 2.3. Suppose r is even. Then there is a nested r-cycle system of order
2r+ 1.

Proof: Letr = 2k, and define a = (ay,...,a,) by

a;=(-1%, if1<i<k-1
a;i= (1", ifk<i<r,

where each a; is reduced modulo 27 + 1. a represents the cycle ajaz - -a,a;.
LetC = {a+ j:j € Zy,+1}. Then, it is easy to see that C is a cycle system
of order 2n+ 1. We define a nesting f of C by f(a + j) = j, for every cycle
a+jeC. 1

We now have the following immediate consequence.

Theorem 2.4. Suppose m > 3 isodd,n=2um+ 1,u ¢ {2,3,4,6,22,23,
24,26,27,28,30,34,38}, and § > 0. Then there exists a nested (2'm) -cycle
system of order 2**'um + 1.

Proof: For u = 1, the result is given in Lemma 2.3. For u > 1, proceed as
follows. Apply Lemma 2.1 to the m-cycle decompositions obtained from Lemma
2.2, using k = 2°. We obtain a nested (2*m)-cycle decomposition of K (21 ,m)s)-
Now, fill in the holes with nested (2 m) -cycle systems of order 2°*!m + 1 which
exist by Lemma 2.3, |

Corollary 2.5. Suppose r is even, r is not a powerof 2,n= 1 modulo 2r, and
n > 78+ + 1. Then there is a nested r-cycle system of order n.

3. Cycle lengths a power of two

In this section we address the question of constructing nested 2*-cycle systems.
It was shown in (11] that the necessary condition n = 1 mod 8 is sufficient for
existence of a nested 4-cycle system, with at most 6 possible exceptions. Hence,
we shall assume 1 > 3 for the remainder of this section.

Our construction for nested 2°-cycle systems depends on the existence of
certain group-divisible designs. A group-divisible design (or, GDD), is a triple
(X, G,A), which satisfies the following properties:

1) G is a partition of X into subsets called groups,

2) A isasetof subsets of X (called blocks) such that any group and
any block contain at most one common point, and

3) every pair of points from distinct groups occurs in a unique block.

The group-type of a GDD (X,G,A) is the multiset {|G] : G € G}.
We usually use an “exponential” notation to describe group-types: a group-type
19273k ... denotes i occurrences of 1, j occurences of 2, etc. We will say that a
GDDisa K-GDDif |A| € K forevery A€ A.

We shall prove the following result in Section 4.
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Theorem 4.14. Suppose u > 5,u # 7,8,12,14,18,19,23,24,33, or 34.
Then there is a {5,9,13,17,29,49 }-GDD having group-type 4°.

The existence of certain nested 4-cycle decompositions will also prove use-
ful.

Lemma 3.1 [11, Lemma 1). Suppose k = 1 modulo 4 is a prime power. Then
there is a nested 4-cycle decomposition of K ,y.

Combining Theorem 4.14 and Lemma 3.1, we have

Lemma 3.2. Suppose uw > 5,u+#7,8,12,14,18,19,23,24,33, 0or 34. Then
there is a nested 4-cycle decomposition of Kgsy.

Proof: Let (X,G,A) bea{5,9,13,17,29,49}-GDD having group-type 4°®.
Take 2 copies of every point z, say {z; , 5 }. For every block A, construct a nested
4-cycle decomposition of K,y where the holes are {z;,1;},z € A. We geta
nested 4-cycle decomposition of K (gpxysy, where the holes are {z;,z2 : z € G}.
GeG. 1

From this point on, we proceed as in Section 2.

Lemma 3.3. Suppose u > 5,u # 7,8,12,14,18,19,23,24,33, or 34, and
i > 3. Then there is a nested (2*) -cycle decomposition of K(zu1ysy.

Proof: Apply Lemmata 3.2 and 2.1. 1

Theorem 3.4. Supposeu > 1,u%2,3,4,7,8,12,14,18,19,23,24,33, or
34, and i > 3. Then there is a nested (2°) -cycle system of order 2%*'u + 1,

Proof: For u = 1, apply Lemma 2.3. For u > 2, we proceed as follows. Con-
struct a nested (2 %) -cycle decomposition of K, ((2#1)%), using Lemma 3.3, and then
fill in the holes with nested (2°%)-cycle systems of order 2**! + 1 which exist by
Lemma 2.3, 1

Corollary 3.5. Suppose r > 4 is a power of two, n = 1 modulo 2r, and
n > 707 + 1. Then there is a nested r-cycle system of order n.

4. Group divisible designs with block sizes from {5,9,13,17,29,49}

In this section, we prove Theorem 4.14. This theorem is an extension of results
proved in Mullin, Schellenberg, Vanstone and Wallis [8] and is proved using the
techniques developed in that paper. It will be useful to recall several results from
[8], but first, we define some design-theoretic terminology.

A pairwise balanced design (or, PBD) is a pair (X, A), such that X is a set
of elements (called points) and A is a set of subsets of X (called blocks), such
that every unordered pair of points is contained in a unique block of A. Ifv is a
positive integer and K is a set of positive integers, then we say that (X,A) isa
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(v,K)-PBDif |X| = v,and |A| € K for every A € A. The integer v is called
the order of the PBD.

Using this notation, we can define a (v, k, 1) -BIBD (balanced incomplete
block design) tobe a (v, {k})-PBD. A BIBD is resolvable if the set of blocks can
be partitioned into parallel classes, each of which is a partition of the points.

For any set K of positive integers, define B(K) = {v: thereis a (v, K)-
PBD}. We say that B( K) is the closure of K. K is said to be PBD-closed if
K = B(K).

We are interested in designs (PBDs and GDDs) with block sizes 5,9, 13, 17,
29, or 49; hence we define Ks = {5,9,13,17,29,49}. The results in [8] pertain
mostly to designs with block sizes from {5,9, 13}. However, all the results from
[8] which we use remain true when the set of block sizes is enlarged to include 17,
29, and 49, so we will restate them in this form. The following PBD result was
proved in (8] and [5].

Theorem 4.1. Suppose v = 1 modulo 4, v # 33,57,93,133. Then there is a
(v, Ks)-PBD.

Hence, v € B( K5) forall such v,

We construct our GDDs recursively, using the following construction of Wil-
son [14].
Fundamental GDD Construction: Let (X,G,A) beaGDD,andlets: X —
Z* U {0} be a function. For every block A € A, suppose that we have a K-GDD
of type {s(z) : € A}. Then there exists a K-GDD of type {}",.cs(z) : G €
G}.

We shall refer to the Fundamental Construction as FC.

Define U = {u : there exists a Ks-GDD of group-type 4%}. Our goal is
to show that all positive integers are in the set U, with a few exceptions. Our
main construction is from [8); it uses transversal designs, which we now define.
A transversal design TD(k,n) can be defined to be a {k}-GDD of group-type
nF. It is well-known that a TD( k, n) is equivalent to k£ — 2 mutually orthogonal
Latin squares of order n.

Lemma 4.2 [8, Corollary 4.6). Suppose there is a TD(6,m),0 <t < m,
{m,t}n{8,14,23,33} =0, and {m,t}NU # 0. Then,S5m+tcU.

Proof: Truncate m — ¢ points from a group of the TD(6,m), producing a (5,
6)-GDD of group-type m’t'. Give every point weight 4 and apply FC, filling in
{5}-GDDs of group-types 43 and 4 (these are constructed by deleting a point
from a (21,5, 1)-BIBD and a (25, 5, 1)-BIBD, respectively). This produces a
{5}-GDD of group-type (4m)3(4t)!. Supposet € U (the case m € U is
handled similarly) and let Go be the group of size 4t. Adjoin a new point oo
to each group, producing a (4(5m + t) + 1,B(Ks))-PBD. Now, delete some
point z € Gy from every block in which it occurs in the design. This produces a
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B (Ks)-GDD of group-type 4°™(4t)'. Replace every block B by a (|B|, Ks)-
PBD, constructing a K's-GDD of group-type 4 5™(4t)!. Finally, replace the group
of size 4t by a K's-GDD of group-type 4*. This yields a K's-GDD of group-type
45m*t as desired. |

TD(6, m) are known to exist as follows.

Theorem 4.3. Supposem #2,3,4,6,10,14,18,22,26,30,34,0r42. Then
there exists a TD(6,m).

Proof: For most values of m, this result is proved in [2]. A few unknown cases
have recently been constructed as follows. A TD(6,24) was produced by Roth
and Peters [9]; a TD(6 , 20) was found by Todorov [12]; TD(6,28) and TD(6, 52)
were constructed by Abel [1]; and TD(6,38) and TD(6,44) have been con-
structed by Todorov [13]. ]

Lemma 4.4. Suppose u =1 modulo4,u ¥ 33,57,93,133. Thenu e U.

Proof: There exists aresolvable (3u+ 1,4, 1)-BIBD, by [3]. Adjoin anew point
to each of the u parallel classes, and adjoin the blocks of a (u, K5)-PBD on the
new points. Now, delete an old point, thus forming the desired GDD. 1

Lemma 4.5 [8, Lemma 6.2). Suppose u =0 or 1 modulo 5. Thenu € U.
We can now eliminate three of the four exceptions in Lemma 4.4.
Lemma 4.6. Suppose u=57,93,0r133. Thenu € U.

Proof: Apply Lemma 4.2, noting that 57 =5 x 11+2,93=5 x 16 + 13, and
133=5 x 24+ 13;and that {11,13} C U. 1

As aresult of Lemmata4.4—4.6, we have thatu e U ifu=0,1,5,6,9,10,
11, 13,15,16, 0or 17 modulo 20, u > 5, u # 33. For the remaining 9 congruence
classes modulo 20, we can already establish preliminary bounds beyond which
u € U. These bounds are all applications of Lemma 4.2, using TD(6,m) from
Theorem 4.3.

The following lemmata will be useful in handling some special cases.

Lemma 4.7 [8, Lemma 6.3]. Suppose u = 2 or 22 modulo 25,u > 2. Then
uelU.

Lemma 4.8. Suppose there isa TD(r,m),0 < r < m,and {r,m} C U. Then
meU.

Proof: The TD yields an (»m, {r, m})-PBD. The result follows since U is PBD-
closed ([8, Lemma 6.1]). |

152



Table 1

u modulo 20 equation |allowable values of m | values of u handled
u=2mod 20 |u=5n+17 m=1mod 4, u>102,u # 182
m>17,m#33
u=3mod 20 |u=5m+13 m=2mod 4, u > 243
m > 46
u=4mod20 |u=5m+9 m =3 mod 4, u>64,u¥124
m>11,m+#23
u=7mod 20 |u=5m+ 17 m=2mod 4, u > 247
m > 46
v=8mod 20 |u=5m+13 m = 3 mod 4, u > 88,u#128
m>15,m#23
v=12mod 20 [u=5m+ 17 m = 3 mod 4, u>112,u5132
m>19,m#23
u=14mod 20 |u=5m+9 m=1mod 4, u>54,u#174
m>9,m#33
u=18mod 20 |u=5m+ 13 m=1mod 4, u>98,u¥#178
m>17,m#33
u=19mod 20 {u=5m+9 m =2 mod 4, u > 239
m > 46

Lemma49. 32 ¢ U.

Proof: A (129,{5,29})-PBD having a unique block of size 29 is presented in

[5]. Delete some point not in the block of size 29 to construct a (5,29)-GDD of

type 432, 1
The following is a variation of Lemma 4.2.

Lemma 4.10 [8, Corollary 5.15]. Suppose there is a TD(6,m),0 <t < m,
and b > 0. Suppose there is a (4m + b, Ks)-PBD, say (Y,B), which contains
a block B of size b, and suppose there is a (4t + b, Ks)-PBD. Then there is a
(20m + 4t + b, Ks) -PBD. If, further, there is a point x € Y \ B which occurs
only in blocks of size 5, then Sm+t+ ((b—1)/4) € U.

Proof: Asin Lemma 4.2, construct a {5 }-GDD of group-type (4 m)’ (41)', say
(X,G,A). LetQNnX =9, |Q| = b. For each group G of size 4m, let (GU
Q,Bg) bea(4m + b, Ks)-PBD, where Q € Bg is a block of size b. For the
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group Go of size 4t, let (Go U Q,Bg) be a (4t + b, Ks)-PBD. Then (X U
Q,Ugec (Be\{Q})UBoUA) isa (20 m+4t+b, Ks)-PBD. If we delete a point z
as hypothesized above, then we obtain a K's-GDD of group-type 4 5™+t ((b=1)/4)
as desired. 1

Corollary 4.11. 39 € U.

Proof: Apply Lemma 4.10 withm = 7,t = 2,b=9,s04m+ b = 37 and
4t + b = 17. By adjoining infinite points to the parallel classes of a resolvable
(28,4, 1)-BIBD, we canconstructa (37, {5, 9})-PBD which contains a (unique)
block of size 9. A block of size 17 is a (17,{17 })-PBD. We obtain a Ks-GDD
of group-type 4%, as desired. 1

Corollary 4.12. 42 € U.

Table 2
u isuel? authority construction
7 no
8 no
12 ?
14 ?
18 ?
19 ?
22 yes Lemma 4.7 u = 22 modulo 25
23 ?
24 ?
27 yes Lemma 4.7 u = 2 modulo 25
28 yes Lemma 4.2 Sx5+3
32 yes Lemma 4.9
34 ?
38 yes (8, Table 1]
39 yes Corollary 4.11
42 yes Corollary 4.12
43 yes [8, Table 1]
44 yes (8, Table 1]
47 yes Lemma 4.7 u =22 mod 25
48 yes Lemma 4.2 S5x9+3
52 yes Lemma 4.7 v =2 mod 25
58 yes Lemma4.2 Sx11+3
59 yes Lemma 4.2 Sx11+4
62 yes [8, Table 1]
63 yes Corollary 4.13
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u isueU? authority construction
67 yes Lemma 4.2 S5x13+2
68 yes Lemma 4.2 Sx13+3
72 yes Lemma 4.7 © =22 mod 25
78 yes Lemma 4.2 S5x15+3
79 yes Lemma4.2 S5x15+4
82 yes Lemma 4.2 Sx16+2
83 yes Lemma 4.2 S5x16+3
87 yes Lemma4.2 Sx16+7
92 yes Lemma4.2 S5x17+7
99 yes Lemma 4.8 9 x 11
103 yes Lemma 4.2 5x20+3
107 yes Lemma 4.2 5x20+7
119 yes Lemma 4.2 5x20+19
123 yes Lemma 4.2 S5x21+18
124 yes Lemma 4.2 Sx21+19
127 yes Lemma 4.2 5x25+2
128 yes Lemma 4.2 5x25+3
132 yes Lemma 4.2 Sx25+7
139 yes Lemma 4.2 S5x27+4
143 yes Lemma 4.2 Sx25+18
147 yes Lemma 4.2 5x29+2
159 yes Lemma 4.2 5x31+4
163 yes Lemma 4.2 Sx32+3
167 yes Lemma 4.2 5x32+7
174 yes Lemma4.2 5x31+19
178 yes Lemma 4.2 5x35+3
179 yes Lemma 4.2 5x35+4
182 yes Lemma 4.2 5x36+2
183 yes Lemma 4.2 S5x36+3
187 yes Lemma 4.2 5x37+2
199 yes Lemma 4.2 5x39+4
203 yes Lemma 4.2 5x40+3
207 yes Lemma 4.2 Sx41+2
219 yes Lemma 4.2 Sx43+4
223 yes Lemma 4.2 5x41+18
227 yes Lemma 4.2 5x45+2

Proof: Apply Lemma 4.10 withm = 8,t = 1,b = §5,s04m + b = 37 and
4t+ b= 9. Asin Corollary 4.11, we can construct a (37, {5,9 })-PBD which
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contains a block of size 5. A block of size 9 is a (9, {9})-PBD. We obtain a
Ks-GDD of group-type 442, as desired. [}

Corollary 4.13. 63 € U.

Proof: Apply Lemma 4.10 withm = 12,t =2,b=5,504m + b = 53 and
4t + b = 13. By adjoining infinite points to the parallel classes of a resolvable
(40,4, 1)-BIBD, we can construct a (53, {5, 13})-PBD which contains a block
of size 5. A block of size 13 is a (13,{13})-PBD. We obtain a K5-GDD of
group-type 4%, as desired. ]

In Table 2, we list all valuesof u = 2,3,4,7,8,12, 14,18, or 19 modulo
29, u > 7, which are not handled in Table 1. For each such u, we indicate if it is
known that u € U. If so, we give a construction to show that u € U.

Summarizing the results of Lemmata 4.4-4.6, Table 1, and Table 2, we have
our existence result.

Theorem 4.14. Suppose u > 5,uv #7,8,12,14,18,19,23,24,33,34. Then
thereisa {5,9,13,17,29,49}-GDD having group-type 4*.
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