Slightly Improved Upper Bounds for Equidistant Permutation Arrays of Index One

G.H.J. van Rees

Department of Computer Science University of Manitoba

This note will closely follow the terminology and results in Mathon [1]. In case 2 on page 305, it states that $s_1+\cdots+s_r$ is maximum if each row of S contains r-2 blocks of size r-3, one block of size r-x and one empty block. But there are no blocks of size smaller than r-x+2. If there were then an element in that block would occur with only $(r-1)(r-4)+r-x=r^2-4r+4-x$. This implies $r^2-4r+5-x$ elements in the design which is a contradiction. Hence the way to maximize the number of pairs in a row consists of (r-3) blocks of size r-3, 1 block of size (r-5) and 1 block of size (r-x+2). This gives $\frac{1}{2}$ $(r^3-8r^2+25r-4-2rx+x^2-3x)$ pairs. Multiply this by r to give the maximum number of pairs in the GRS. This must be larger than $(r^{2-4r+6-x})$ and gives $x \geq \frac{11}{2} + \sqrt{2r-\frac{31}{4}-\frac{8}{r-1}}$ or $v \leq r^2-4r+\frac{1}{2}-\sqrt{2r-\frac{31}{4}-\frac{8}{r-1}}$. For this to work r-x must be greater than 0.

Similarly for case 1, the smallest possible block must be r-x+2 and for this to work r-x-1>1 or r-x>2. The row with the block of size r-2 has 3 more pairs than the other rows so the number of pairs in S is 3 more than in the previous case giving

$$x \ge \frac{11}{2} + \left(2r - \frac{31}{4} - \frac{14}{r - 1}\right)^{1/2}$$
or $v \le r^2 - 4r + \frac{1}{2} + \left(2r - \frac{31}{4} - \frac{14}{r - 1}\right)^{1/2}$.

For v=43, r=9, x=8 the argument fails but some *ad hoc* arguments prove that the row containing the big block has blocks of sizes 7, six 6's, and two zeros. The other rows are like case 1 giving a total of 903 pairs which is exactly correct. Every element not in the big block occurs only in blocks of size 6 or 4. Every element in the big block occurs in blocks of size 6 and two blocks of size 3. Hence there are $3 \times 8 = 24$ elements in blocks of size 3 but only $7 \times 2 = 14$ elements counted the other way. Hence v must be less than 43 when r=9. This can be summarized as follows:

Theorem. If s(r, v) has side $r \ge 9$, then

$$v \le \left[r^2 - 4r + \frac{1}{2} + \left(2r - \frac{31}{4} - \frac{14}{r-1} \right)^{1/2} \right].$$

Of course the improvement is only 2 or 3 over Mathon's result. We can update his table as follows.

r	8	9	10	11	12	13	
L(r)	16	18	27	24	35	40	
U(r)	31	42	57	73	92	113	

The result L(13) = 40 was discovered by Mathon [2] by finding a doubly resolvable BIBD (40, 130, 13, 4, 1).

References

- 1. R. Mathon, *Bounds for Equidistant Permutation Arrays of Index One*, Combinatorial Mathematics: Proceedings of the Third International Conference, Vol. 555, Annals of the N.Y. Acad. Sciences, pp 303-309.
- 2. R. Mathon, private communication.