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Abstract. Asstated in [2], there is a conjecture that the determinant function maps the
set of n x n.(0, 1)-matrices onto a set of consecutive integers for any given n. While
this is true for n < 6, it is shown 1o be false for n = 7. In particular there isno 7 x 7
determinant in the range 28 — 31 but there is one equal to 32. Then the more general
question of the range of the determinant function for all n is discussed. A lower bound
is given on the largest string of consecutive integers centered at 0, each of which is a
determinant of an n x n (0, 1)-matrix.

1. Introduction.
Let us begin with a few conventions:
e Write T, for the set of n x n (0, 1)-matrices.
* fn = maxyer, |M|.
e Dy(m) is the assertion that there is a matrix in T,, whose determinant is
k. Abusing the notation somewhat, any such matrix shall be denoted a
Di(m).

Knowing the range of the determinant function on T, may be useful, since the
existence of a combinatorial design is equivalent to the existence of the corre-
sponding (0, 1)-incidence matrix, and hence implies that the corresponding (usu-
ally predictable, as in the case of SBIBD’s) determinant exists when that matrix is
square.

Brenner and Cummings ([2], 1972) relate the following conjecture: that for a
given =, the determinant function maps 77, onto a set of consecutive integers. In
my notation, this translates to “|k| < B, implies Di(n)” forn > 1 (since we have
Dy (m) if and only if D_;(n) — see Lemma 3.1 — and consequently this set is
symmetric with respect to 0). Subsequently we refer to this as the Consecutive
Integer Determinant Conjecture.

Brenner says that he had raised the question with Marshall Hall in correspon-
dence before 1972. He also relates that some time ago he heard someone had a
counterexample. In any case I have not been able to find any that appear in print
to date.

In Section 2 we show that the above conjecture is in fact false. Section 3 intro-
duces a lemma which can be used to show that certain determinants exist. In the
last section we outline some of the relevant unsolved questions, indicating some
partial results obtained.
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A final resolution to some of these questions may lead to a solution of the
Hadamard maximum determinant problem, which is the question as to what is the
maximum determinant among ( & 1)-matrices of a given order ([2], [8]).! This is
because Dx(n) is equivalent to the existence of a (+1)-matrix of order n+ 1 with
determinant 2"k, modulo the following transformation:

2°|D| = 2D

1|1--.1
0

: 2D
0 O]

2D-J

-1
where D is a Di(n) [11).2

Let us take note of a nice (well-known) property of rank-one matrices which
will prove useful at several points. A rank-one matrix U is similar to an upper-

triangular matrix. The only possible form for an upper-triangular rank-one matrix
with trace equal to that of U is

trU I *
0 @
: 0
0

Noting that trace is similarity-invariant, immediately we have:

Lemma 1.1 (the “Rank-one Lemma”).
IfU is rank-one, then|I + U| = 1+ tr(U).

2. The consecutive integer determinant conjecture is false.

We shall see in the next section that the consecutive integer determinant conjecture
holds forn=1,... ,6. However, that is as far as it goes, as the following result
shows: ~

Ythe Hadamard bourd, n2 , holds in all orders. A (&1)-matrix achieving this bound is called a
Hadamard matrix. Equivalently, a Hadamard matrix H is one which satisfies HH t=al.

2 and using the fact that we can negate rows and columns of a matrix without changing the absolute
value of its determinant.
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Theorem 2.1. There is no Di(7) for27 < k < 32.

Proof: First note that 8 = 9 (see Section 3). This tells us that any matrix whose
minors along a row are in 7, and whose entries in this row are from {0, +1}, has
determinant less than or equal to 9 times the number of non-zero entries in this
row. We shall use this observation repeatedly in the proof.
"~ Now suppose A is a D(7) with & > 27. Writery,... ,r7 for the rows of A,
r; for ||ri]|, and )i for (r;,¥;), i # j. Then proceed as follows:®>

1. For each 1, r; > 4. This follows from the above cbservation.

2. Supposc Ty = 7. Then:

ry 1 111111
A=r2(l 1 11***),\,(000(')***),(3)
Here ~ denotes equivalence via the action of adding a multiple of one row
to another.* Plainly we have forced |A| < 27, which is a contradiction.
We argue similarly for each row, concluding that for each ¢, 7; < 7.
3. Suppose that v, = r3 = ... = r7 = 4. Then for,; > 1 we cannot have

Aij =3 or4 —eclse |A] < 18 asin (3). Thus ;; = 1 or 2.
Now suppose A2 3 = 1. Then:

r /1 111000

r3(1000111) @
and we cannot have \; ; = 1 for j > 3, else then A3 j = 3 or4, which, as
we have just seen, cannot happen. Similarly, A3 ; # 1, and so we have:

rp ¢/1 1. 1.1 0 0 O
r3(1000111). ®)
rp \0O 110110
Clearly, the first column of A must then have at most three nonzero entries.
Expanding by minors along this column, we see that |A| < 27, which is a
contradiction.
We conclude that if all r; = 4 with at most one exception, then );; = 2
whenri=r;=4.
4, Suppose that r; = 6. If in addition r, has a 0 in the same column as the
0 inry, then:

n (0 1 11111
A=l'2(01111**)~(00090**).(6)

3With no loss of generality, we assume at each step that the columns of A arc arranged conveniently
for display purposes.
a determinant-preserving operation.
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This gives a contradiction as before. Thus, r; must have a 1 in this column
forj > 1.

It follows in the same manner that r; = 4 for j > 1. Now by step 3,
Xij =2 fori,j > 1. Letting B be the submatrix obtained by excluding
the first row and column of A, then, this all translates to BJ = BJ = 3J
and BB = 21 + J. Thus BB!J = 9J = 2IJ + J? = 8J, whichis a
contradiction (thus showing the well-known fact that an SBIBD(6,3,1)
cannot exist).

We conclude that for each ¢, r; < 6.

5. Ifr;=r;=5,then);j =3 —forif \;; = 5 or4 then |A| =0 or < 18
respectively, as in (3) and (6). Similarly, if r; = 5 and r; = 4 we cannot
then have );; = 3 or 4 — else as above, [A| < 27 or 9 respectively.
In any case, if r; = S then every other row must have 1°’s in the columns
corresponding to the 0°s in r;. But then |A| = 0 — a contradiction.

We conclude that r; = 4, all 1.

6. Together, steps 3 and 5 tell us that AA* =21+ 2J.

We now can derive the following using the Rank-one Lemma:

4| = |a4'?
= [2I+2J|' @)
=27/281/2 = 32

We have shown that if A € Ty then either JA| < 27 or |A| = 32. The result
follows. |

The existence of a D3, (7) may be inferred from the existence of a Hadamard
matrix of order 8. This provides the claimed counterexample.

3. Proliferation of (0, 1) -determinants.
Here are some of the best bounds on G,:
n=0 (mod4): B, < (2n+ 1)/2(n/4)¥? (Barba, [1]).
=1 (mod4): Br < ((n—1)/4) 5 (Ehlich [6], and Wojtas, [12]). Equality
holds for n < 100 except n = 21,33,57,69,73,77,89,93,97 ([13],
3D).
n=2 (mod4): B, < (2n+ 1)/2(nj4)¥? (Barba, [1]).
n=3 (mod4): B, < 27*(n+1) i (this follows from the Hadamard bound
and (1)). This bound is achieved precisely when there exists a Hadamard
matrix of order n+ 1 (this is established for many orders = 0 (mod 4)
including all less than 428 [9]).

o Thereis also the lower bound 8, > 2~*(3(n+1)/4) % forall n(Clements
and Lindstrom, [4]; Schmidt [10] gives a sharper, but less straightforward,
lower bound).
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e We have 8, = 1,1,2,3,5,9,32,56, 144,320, 1458,3645,9531 for

n=1,2,...,13 ([2], [11], [7]). n = 14 is apparently the first case for
which 8, is not known.

The following main result for this section is given as one “monster lemma”
since the different parts are designed to be used together recursively.

Lemma 3.1 (Monster Determinant Lemma, or MDL).

1

2.
3.

N O

Dy(n) iff D_(n) forall n> 1.
For any positive integers a, k and n, Dy(n) implies Do(n+ a).
If Dx(n) and Di(m) then
() Dy(m + m)
(1) Dygmia(mn)
(i) Dymapm1gmr(mn+ m+n)
(iv) if the former is v-row-regular® and the latter has no row sum greater
than r (forexample, if it is s-row-regular with s < r orif m < r+1),
then there is an r-row-regular Di(m + n).

. If there is an r-row-regular Dy(n) and an s-row-regular D;('m) then

@) there is an rs-row-regular Dymp( mn)
(ii) there is a (rm + sn— 2rs) -row-regular
Dy m-niw-1 gmpn( 2 _g)m-1(m_2)>1 (242 _2) (M)
Gii) for 0 € d < 0,0 < c< mthereisa Dﬁ(n_cd)(m-l- n) and a
D%(v&(c—s)-&m(d—r)i-lra—ch) (m +n— 1)
(iv) for —min(r,s) <t < min(n—1r,m—s), thereisan(r+ s+ t)-
row-regular Duy(,, o4py (T + 7).

. If there is an r;-row-regular Dy,(w;) foreach i=1,... ,s then

() D, L - %_1,(1;, + ...+ n,) fora; satisfying0 < a; <n
() Dy, kv pp(m+...4n—1).

. There is av 1 -regular D1(1).
. If there is an r-row-regular Dy(m) then there is an (n — r)-row-regular

Dyz—ny(n).

. If there is a Hadamard matrix of order n+ 1 (for example, any n = 3

(mod 4) and < 428), then there is an (n+ 1) /2 -regular Dz( #_)ng.(n).

. If there is a Hadamard matrix of order n and excess® z then

Diyayt 1oapm (M-

5

amatrix R is r-row(respectively column)-regular if RJ = rJ (respectively JR = rJ). A matrix is

r-regular if it is both r-row and r-column-regular. In the lemma we shall disallow 0 -row-regularity
whenever this would imply division by 0.

S The excess of a matrix is the sum of its entries. Many such cases may be inferred from results in [5]
— for example, all z = 0 (mod 4) satisfying |z| < max{n,3n—8),and all z = 2a/n for o] < n/2
when n is the order of a regular Hadamard matrix, as is the case for each n where \/n is the order of a
Hadamard matrix.
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Proof:
1.

2.

This follows from the fact that interchanging two rows or columns negate
a determinant (henceforth, this fact will be used without reference).
Suppose A is a Dy(n). Expanding the following array by minors will
verify that it is a Dy qx(n+ a):

( 0 1 ... 1 1 0 ... O \
1
1 L1 0 : ®
v 0 A

\ /

Here w is the first column of A.
Let A bea Di(n) and B be a Dy('m). Then
@ l4® Bl =5 5|= 141181

@ii) |A® B| = |A|"|BI"

(iii) using (1), construct (1) -matrices A’ of order n+ 1 and B’ of order
m + 1. Then verify that A' @ B’ is a (&1)-matrix of order mn +
m + n+ 1 with determinant (2%k)™*!(2™)*!. Then (1) implies
the existence of the required matrix in Tppemen -

(iv) If the row sums of B are all less than or equal to r, then we can choose
C in T, such that B + C is r-row-regular, so then g g) an r-row-
regular Dy(m + 7).

Now further suppose that A is r-row-regular and B is s-row-regular. then

(i) consider A® B.

(i) apply the Rank-one lemma three times to Zm=(24=J0@2B=Jn)

(i) choose C to be c-row-regularand D to be rank one and d-row-regular.
LetX = ( g g) . Using the Rank-one lemma (with X = Y+ ( °D g )),
we get [X| = E(rs — cd), which is the first determinant. The
reader may verify that X' = Y=! + zy=! (9 0) y~1. Thus,
(X Jmay) = He=tiimld=0) Erom this we may use the Rank-one

d—
lemma again to show ctha't‘ 2X — Jmen is @ (=1)-matrix with deter-
minant 2’"*"%( mﬂl + rs — cd), which together with (1)

establishes the second determinant.
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(iv) Now if — min(r, s) <t < min(n—r»,m—3),wecanfindcanddas
above with 7+ c = s+d = r+ s +1t. Then X is r+ s+ t-row-regular
and has determinant — &¢(r + s+ ¢).

5. Now let X;,... , X, be, respectively, r;-row-regular Dy (n;)’s for i =

1,...,s. For compactness, write Jj, , for the m x n matrix whose entries
in the first a columns are all 1 and the rest of whose entries are 0. Then
take
X, 0 Jaxm J':I.Xﬂn
M=( )andU=( : : ) ®)
0 Xs J::xm J::xn.
(i) Itis easy to verify that
i J::xm _J:,‘xn.
M™\U= : : . (10)
_J::xm oo L J:.'xn.

Thustr(M“ U) = &+..-+%,andso|M—U| = [M||I-M~'U| =
oks(1 = (-L + ..o+ —l)) by an application of the Rank-one
lemma Negatmg the appropnate columns gives a matrix in T;, whose
determinant has the same norm.
(i) When a; = m;, alli, thenU = J,sotr(M~1J) = &+ ...+ 2
Apply (Dto2M - J.

6. This is clear.

7. Now let A be an r-row-regular Di(n). Then J — A is (n — r)-row-
regular and the Rank-one lemma gives |J — A| = £|4| [ — A~1J|=
+k(1 —tr( J)) =+k(2-1).

8. This follows directly from the construction in (1), and the fact that the
given Hadamard matrix has determinant (n+ 1) %",

9. Apply the Rank-one lemma to &34, where H is the given Hadamard ma-
trix.

]

The following two theorems are just a simple demonstration of the power of
this lemma:

Theorem 3.1. Foreachnand0 < k < n, there is a k-row-regular Di(n).

Proof: I.; isa 1-regular D;(k+ 1). A k-regular D;(k + 1) follows by part 7 of
MDL. The result follows by using this matrix together with I, ;_ in part 3iv). Il
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Theorem 3.2. If there is an r-row-regular Dy(n) thenr|k.

Proof: Using this matrix and I in part 3iv), we get an r-row-regular di(n+ 1).
Thus there is @ Dy(z-1)(n) and a Dk(,:_u_,)(n+ 1), by part 7. So r|kn and
r]k(n+ 1) and so r|k. |

Table 1 compiles the results given by MDL for n < 10, comparing them to
determinants found using other methods (“—” indicates an entire range of deter-
minants which are established, the left endpoint defaulting to 0).

Table 1
Determinants found up to order 10 with and without MDL

n MDL implics Dy(n) for k = other determinants found without MDL
1(-1
211
3|-2
4]|-3
5[-5
6|-8 ]
71 -13,16,18,20,24,32 14,15,17,19
8 | —18, 20, 24, 28, 32, 40, 48, 56 19,21 - 23,25 — 27,29 — 31,33 — 39,42,44,45
9 | ~24, 26, 28, 32,40, 48, 56,64,72,80, | 25,27,29 - 31,33 — 39,41 — 47,49 - 55,57 — 63,65 — 71,73 - 79,
88,144 89 -~ 102, 104, 105, 108,110, 112, 116, 120, 125, 128
10 | —34, 36, 38 — 40, 44, 48, 56, 64, 72, 80, | 35,37, 41 — 43,45 — 47,49 — 55,57 — 63,65 — 71,73 - 79,81 — 87,
88,96, 104, 112, 120,128, 136, 14 89 — 95,97 — 103,105 — 111,113 - 119,121 — 127,129 — 135,
137 - 143, 145 — 232, 234 ~ 256, 258, 260, 261, 263 — 267, 270,
272 — 276, 279, 280, 283 — 285, 288, 291, 294 —~ 287, 304, 312, 315, 320

4. What next?

With the demise of the consecutive integer determinant conjecture, several related
questions are left wide open:

What is the range of the determinant function on 7, in general, and the
value of 8, in particular?

It appears from constructions so far that very strong structure is dictated for
matrices of large determinant in 7,,. For example, if a Hadamard matrix of
order n+ 1 exists, a Dg, (n) mustbean SBIBD(n, =~ 2 , B sl (or rather, the
(0, 1)-incidence matrix corresponding to it — however, we shall not dis-
tinguish between them here). Now consider a matrix from T, of the form

( 11100 ) We can show that it has, up to sign, the same determi-

nant as ('J"—’_H%;'—o) . If we combine transformations of this type with
row and column permutation and the transpose operation, these together
define an equivalence relation in T, with respect to which the absolute
value of the determinant is invariant. With this notion of equivalence it
is possible to show that s D (2) is equivalent to I, a D,(3) is equiva-
lent to J3 — I3 (that is, an SBIBD(3,2,1)), a D3(4) is equivalent to an
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SBIBD(4, 3,2), or alternately,

Similarly, Ds(5) is equivalent to

1 0f1 1 1
01|111
T 1[{1 0 O
1 1|0 1 0
1 110 0 1

Are there principles which dictate, up to equivalence, the structure of a
Dpg,(m), or in general any “large enough” determinant in any given order?

o With what frequency does each determinant occur in each order? Figure 1
compiles results obtained from a fairly large sample in order 7.

Determinant 0 1 2 3 4 5 6:7 8 9 10
Frequency 529 239 144 46 28 4 4 3 1 1

Figure 1
Occurrences of determinants of order 7 among a sample of 1000

e With regard to the relationship between row-regularity and determinants,
there are a number of questions. Chief among these is the following: for
what triples (r, n, k) do there exist an r-row-regular D(n)? Some ele-
mentary partial results:

- (r,n,k) mustsatisfy0 <7< n k< Bu.rlk. Ifr=0o0rn, k=0;
ifr=1,k=1ifr=n—1,k=n—-1.
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— if 7|k and Dy(r + 1) for every factor p in some factorization of k
then there is an = for which (7, n, k) is such a triple (this is almost
certainly true when the second condition is replaced with > 1). In
particular, when » > vk we may take n < 2.

— if (v, n, k) is such a triple and # > nthen (7,7, k) is one as well.

o For each n, let 8, be the largest number such that k < 8, implies Di(7).
In other words, [— £, B.] is the largest possible interval of consecutive
integer (0, 1)-determinants in order n centered at 0. We have shown that
B # B7. Can we have 8], = B, forn > 7? What are some non-trivial
bounds on B,? The only upper bound I know so far is 8,. A trivial lower
bound from Theorem 3.1 is 8, > n— 1. Here is a somewhat better one:

Theorem 4.1. Foralln, 8, > |$]% — 1.

Proof: Write u = |3]. If m < u then Theorem 3.1 provides a Dm(n). If u <
m < u?—1,wecanwritem = s(u—1)+t,wherel < s<uand1 <t < u. Now
take an s-row-regular D,(u) and I,_, and apply part 5i) of MDL, with a; = ¢
and a; = u. This givesus a Dl,,(£+¥_,)(u + (n—u)) = Dp(n). ]

This theorem actually shows that part 2 of MDL is not neccesary fora > 4,
since then B, > a, and so the first point of part 3 gives the same result (we note
that part 2 is not used to establish this result).
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