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Abstract. We introduce neighborhood intersection graphs and multigraphs of loop-
graphs to generalize the standard notions of square and distance-two graphs. These
neighborhood (multi)graphs are then used to construct self-dual graphs and multigraphs
(embedded on surfaces of varying genus) which have involutory vertex-face mappings.

1. Neighborhood multigraphs of loop-graphs.

A loop-graph is a finite graph with loops possible at vertices. (See [5] for this
and any unexplained terminology. For convenience, we assume all graphs, loop-
graphs and multigraphs are connected.) If L is any loop-graph with vertex set
{v1,...,vs}, the neighborhood- N; of vertex v; is the set of all vertices adjacent
to v;, including v; itself if and only if there is a loop at v;. The neighborhood multi-
graph N(L) of L is the intersection multigraph of the family of neighborhoods
Ni,..., N,. We think of N(L) as having the same vertex set as L and give an
example in Figure 1.
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Figure 1

The neighborhood graph of L is the intersection graph of its neighborhoods,
and so is the underlying graph of the neighborhood multigraph; we denote it by
N(L) |. If G is any graph and L is G with a loop added at each vertex, then
N(L) | is the square (or closed-neighborhood graph) of G. If G is any graph and
L is identical to G (i.e., if L is loopless), then N(L) | is the distance-two graph
(or two-step graph or open-neighborhood graph) of G. Our notion subsumes
both these as extreme cases, as well as extending them to the stronger domain
of intersection multigraphs. (Related extensions of various kinds of intersection
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graphs to intersection multigraphs are found in [1, 8, 9, 10, 11, 12]. There are ad-
vantages in both theory and applications to using multigraphs rather than just their
underlying graphs.) In the second section of this paper, we show an application of
neighborhood multigraphs to finding self-dual graphs embedded on surfaces; this
is extended to multigraphs in the third section.
Neighborhood graphs and distance-two graphs were characterized by Mukhopad-

hyvy [14] and Acharya and Vartak [4], respectively. These characterizations are
generalized to neighborhood multigraphs of loop-graphs in Theorem 1 below.

Theorem 1. A multigraph M of order n is the neighborhood multigraph of a
loop-graph if and only if its edgeset can be partitioned by a collectionC,, ... ,C,
(allowing repetitions) of complete (simple) subgraphs such that, for each 1 <
i, < n,v; € V(Cj) ifand only ifv; € V(C;).

Proof: We merely sketch the proof since it is very similar to the characterizations
in [14] and [4]. Take each V(C;) to be N;. The key observation (in the spirit of
[8])is that forany 1 < 4,7 < m,v; € N; if and only if v; € N;. | |

To obtain the characterization of neighborhood graphs from Theorem 1, simply
replace “partitioned” with “covered”. To obtain the characterization of closed [or
open] neighborhood graphs, add the requirement that v; € V(GC;) [respectively,
v, € V(C)l,foreach1 < i< n

Paralleling the extension of other types of intersection graphs to multigraphs, it
is natural to seek a simple graph which is a neighborhood graph, but which is not
a neighborhood multigraph when viewed as a multigraph with each multiplicity
equal to one. The graph G shown in Figure 2 is such an example. This is the
neighborhood graph of the loop-graph L shown here in Figure 2.
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Figure 2
(The only difference between N(L) and G is that N(L) would have a double
edge between v4 and vs.) But Theorem 1 shows that G is not a neighborhood
multigraph.
Proof: Suppose, rather, there were a collection Cy,...,Cs, as in Theorem 1,
None of the C; could be K4, lest the other five members of the collection be K3 ’s
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and each vertex be in either two or three members; some vertex needs to be in four
to match with the K4. So the collection would have to contain two edge-disjoint
K3’s and five K3 's, or one K3 and eight K ’s, but either requires more than six
Ci’s. [ ]

Because of the increased flexibility allowed by using loop-graphs, it is hoped
that a “nicer” characterization might exist for neighborhood graphs or multigraphs
than in the traditional setting with all open or all closed neighborhoods. By “nicer”
we mean that it would not involve the existence of a particular family of sub-
graphs. (In other words, it would be farther from the definition, in the sense of not
being predictable using the mechanism of [8].) While we have no such nicer char-
acterization to offer, the next section does give an application of neighborhood
multigraphs for which the context of loop-graphs is ideal.

2. Application to self-dual graphs.

Suppose M is any multigraph with vertex set {vy, ... ,v,} which has been em-
bedded on a surface £. (We assume all our embeddings are 2-cell embeddings, as
in 5, 16], and that, whatever the genus, they are “polyhedral maps” in that each
edge is on two faces.) Suppose that the faces of this embedding are indexed as
F, ..., F,. We say that the pairing of each vertex v; with face F; is an involutory
vertex-face mapping for M on L whenever, forany 1 < 1,7 < n,v; € V(F)
if and only if v; € V(F;). We say that the maiching of each v; with F; is a self-
dual mapping whenever the number of (parallel) edges common to vertices v; and
v; always equals the number of edges common (o faces F; and F; . We call an
embedded (multi)graph self-dual whenever it admits a self-dual mapping.

In this section we consider only the case that M is a simple graph G, postpon-
ing the general multigraph case to the next section. Whenever G is 3-connected,
each involutory vertex-face mapping is automatically a self-dual mapping. But
[7] gives an example of a 3-connected graph which has a self-dual mapping, yet
no involutory self-dual mapping. (The existence of such a graph was unknown as
recently as [6]; see [2, 3] for updated discussions.)

Theorem 2. Suppose G is any 3-connected graph having an involulory vertex-
face mapping on a surface .. Then we can construct a loop-graph L such that
G N(L)-N(L) | (ie, G is N(L) with each multiplicity decreased by one).

Proof: Suppose G is embedded on the surface £ with each v; paired with F; by
an involutory mapping. Construct a loop-graph L having vertex set {vi,... ,vs}
with an edge between v; and v; (allowing 1 to equal 7) if and only if v; is incident
with F; in G.

Define a bipartite graph R (called the radial graph , introduced in [15, Section
3.5] for the case of a plane graph G) to have vertex set {vy, ... , v} Fi,..., Fp},
with an edge between vertices v; and Fj if and only if v; € V(Fj). The bipartite
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graph R can be thought of as combining both the embedding of G and the involu-
tory vertex-face mapping. (Note that both G and its surface dual on £ determine
the same radial graph.)

Toward showing that G & N(L) — N(L) |, suppose v; is adjacent with v;
in G. Two faces Fy, and F, in G incident with edge v;v; must be the only faces
incident with both v; and v; (since G is 3-connected). Hence in R, v; and v; will
be joined by exactly two paths of length two (through F; and F;), so they will be
joined by a double edge in N(L) and so by a single edge in N(L) —N(L) |. If
v; is not adjacent to v; in G, then (again using 3-connectedness) they will be on at
most one common face of G, so joined by at most one path of length two in R, so
joined by at most a single edge in N(L), and so nonadjacent in N(L)—-N(L) |.

|

As an example, consider the involutory mapping indicated by the placement of
the F;’s in the wheel graph G in Figure 3. The neighborhoods of L (e.g., N1 =
{v1,v2, v6}) correspond exactly with the faces in the plane embedding of N(L) —
N(L) |. (A different involutory mapping for G would take each F; to be the face
“directly across” from v;; the resulting L would be a loopless wheel, again with
G = N(L) — N(L) |.) Another example, on the torus, is shown in Figure 4. An
interesting consequence of [2, Theorem 3.7] is that whenever G is a 3-connected,
planar, involutorily self-dual graph, then L must have an even number of loops.
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In practice, it is useful to use Theorem 2 backwards: A bounty of (always invo-
lutorily) self-dual graphs can be generated by starting with an arbitrary loop-graph
L, then using the neighborhoods of L to determine the faces of an embedding of
N(L) — N(L) | in a surface. Indeed, that is how the above examples were
generated.

3. Application to self-dual multigraphs.

Although Theorem 2 was stated only for simple graphs, it holds as well for multi-

graphs of order > 3, since the only such 3-connecied multigraph which has such
an involutory vertex-face mapping is the M shown in Figure 5. In this section,
we consider the case of multigraphs in general.
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Suppose L is any loop-graph with vertex set {vy, ... ,vs}. Suppose M is any
multigraph, on the same vertex set, which has been embedded on a surface Z such
that the neighborhoods N, ..., N, of L correspond precisely to the vertex sets
of (all) the faces Fi,... , F, of the embedding of M on the surface. Notice that,
when 1 < 4,7 < n, v; € V(F}) is equivalent to v; € Nj, and sotov; € N;, and
soto v; € V(F;). Thus pairing each v; with F; defines an involutory vertex-face
mapping of M on X.
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Given such a multigraph embedded on X, it is easy to produce a loop-graph L
(from the bipartite radial graph R) as in the proof of Theorem 2. Theorem 3 shows
how M can be recovered from L using its neighborhood multigraph, generalizing
the formation of N(L) — N(L) | from Theorem 2. For any vertices v; and v;
of M, let u(v;, v;) be the number of parallel edges of M which contain the two
vertices, and p(v;,v;) be the number of faces of the embedding which contain
both.

Theorem 3. Suppose M is any multigraph having an involutory vertex-face map-

ping on a surface . Then we can construct a loop-graph L such that M can be
obtained from N(L) by deleting precisely p(v;,v;) — p(v;,v;) parallel edges
from those joining v; with v;, for each pair of adjacent vertices in N(L).

Proof: Suppose M is a multigraph embedded in £ with each v; matched with F;
by an involutory mapping. Define the bipartite graph R and loop-graph L as in the
proof of Theorem 2. Suppose v; is connected with v; in M by p (possibly zero)
parallel edges, and that they are in p (necessarily > p ) common faces. Hence in
R, v; and v; will be connected by precisely p paths of length two, so by p edges
in N(L). Deleting p — p edges will leave v; connected with v; by i edges in the
multigraph. |

The following examples show the relation between M and L. Figure 6 shows a
self-dual plane multigraph M with the indicated involutory vertex-face mapping.
Note that vz and vg are joined by three parallel edges in N(L), so p(v2,ve) —
u(v2,v6) =3 —2 =1 of them are deleted in recovering M .

Corollary. Suppose M is any multigraph having an involutory vertex-face map-
ping on a surface £. Then we can construct a loop-graph L such that M is a
spanning submultigraph of N(L).
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Once again, it is useful in practice to use Theorem 3 backwards, generating
multigraphs having involutory vertex-face mappings (and so potential self-dual
multigraphs) by starting with an arbitrary loop-graph L, identifying the submulti-
graphs of N( L) which correspond to the neighborhood of L, and then trying to
delete edges until these submultigraphs can be embedded as the faces on some sur-
face; the example in Figure 6 was obtained in this fashion. An additional example
starts with the loop-graph L in Figure 7. The neigborhood multigraph N(L) in-
dicates that the desired embedding would have to have five faces having vertex
sets {v2,v3,va,vs}, {v1,v2,v3,va,v5}, {v1,12}, {v1,v2} and {vy, v2 }. Edge
deletion (and repositioning the vertices on the plane) produces the multigraph M.
(Every multigraph with an involutory vertex-face mapping given so far as an ex-
ample in this paper is self-dual. This need not happen in general, but the author is

lacking such an example on the plane.)
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Of course, given an arbitrary loop-graph L the process in the preceding para-
graph (or in the final paragraph of Section 2) may well fail; a (loopless) example
is shown in Figure 8. Trying to follow the pattern in Theorem 3 yields the hyper-
graph H shown in Figure 8, in which {v;,v2,v3, } and {v4,vs, v}, are hyper-
edges. This is, in some sense, a self-dual embedding of the hypergraph, and in
general seif-dual embeddings of self-dual “multi-hypergraphs™ are produced.
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