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Abstract. Itis shown that the obvious necessary condition Ak(h — 1)m? =0 (mod k)
for the existence of a (v, k, \) -perfect Mendelsohn design with A holes of size m is suf-
ficient in the case of block size three except for a nonexisting (6,3,1)-PMD.

1. Introduction

By MK, n,.., W€ mean a complete multipartite directed multigraph on a vertex

set X = UigicaXi, where X;(1 < i < h) are disjoint sets with [X;| = n;,
v =Y 1 «icn T and where two vertices x and y from different sets X; and X; are
joined by two arcs (z,y) and (y, z) exactly X times each.

I AKy, m,..n can be decomposed into directed k-circuits such that for any 7,
1 < 7 < k— 1, and for any two vertices z and y from different sets X; and X;,
there are exactly ) circuits along which the (directed) distance from z to y is r,
we call (X,B) a holey perfect Mendelsohn design, where B is the collection of
all circuits (called blocks). We denote the design by (v, k, \) -HPMD. Each set
X;i(1 <1< h) iscalled a hole and the vector (n1,m,...,m) is called the type
of the HPMD.

A (v, k,)\)-HPMD of type (1, 1,..., 1) is called a perfect Mendelsohn design
denoted by (v, k, )\)-PMD. If we ignore the cyclic order of the vertices in the
circuits, a (v, k, ))-PMD becomes a (v, k, A\(k — 1)) -BIBD, Therefore, we can
consider a perfect Mendelsohn design as a generalization of balanced incomplete
block designs. It was N.S. Mendelsohn who first introduced the cyclic order of the
elements into blocks (see [4], [5]). The existence question of a (v, k, \)-PMD has
recently attracted much attention, and a survey can be found in [6]. The concept of
HPMD has played an important role in the discussion of the existence of PMDs.
Further, the existence question for a (v, k, \)-HPMD is also posed in [6]. In this
paper we consider only the simple case of equal-sized holes, ie., m = m =
--- = m = m. The type will be denoted (m*). Since a (v, k, \)-HPMD of type
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(m*) contains b = Mh(h — 1)m? [k blocks, we obtain the following necessary
condition:

A(h—1)m? =0 (mod k). (1.1)
We shall show that (1.1) is also sufficient for the existence of a (v, k, \)-HPMD
of type (m?) when k = 3 except for a nonexisting (6,3,1)-PMD.

2. Preliminaries

We assume that the reader is familiar with the group divisible designs (GDDs),
pairwise balanced designs (PBDs), transversal designs (TDs), etc. For more in-
formation the reader is referred to [3). We shall often use the following weighting
techniques which can be found in [6] for the case of A = 1. Here we omit their
proofs, and further details can be found in [2].

Lemma 2.1. Suppose there exists a TD[k; m], then

(1) there exists an (mn, k,\) -HPMD of type (mm,mm, ..., mny,) if there
exists an (n, k, \) -HPMD of type (w1, m,...,m); and

(2) thereexists an (mn, k,)\) -HPMDof type (m"®) if there existsan (n, k, )} -
PMD,

Lemma 2.2. Suppose there is a GDD[K, 1, M; v]) with groups G1,G2,...,Gx
where M = {|Gi| = m|1 < i < h}. If for any block size u € K there is an
(mu, k, \) -HPMD of type (m*), then there exists an (mv, k, \) -HPMD of type
(mn,mn2,...,mn).

The following result on GDDs (see [3, p. 466]) is useful.
Lemma 2.3. AGDDI(k, ), g; gs] exists for k = 3 or 4 if and only if

Ms—=1g=0 (mod k—1),

As(s—1)g? =0 (mod k(k— 1)), @D

except for two nonexisting designs GDD[4,1,2; 8] and GDD[4,1,6; 24].

The existence of a (v, 3, A\)-PMD has been established in [1],[4] and an alter-
native proof can be found in [6].

Lemma 2.4. A necessary and sufficent condition for the existence of a (v, 3, ) -
PMD is (v — 1) = 0 (mod3), except for a nonexisting design (6,3,1)-
PMD.

We also need a result on RBIBDs (see [3, p.451]).
Lemma 2.5. An RBIBD RB(3, 1; v] exists if and only if v =3 (mod 6).
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3. Main results
When k = 3, (1.1) becomes Ah(h — 1)m? = 0 (mod 3). This can be divided
into two cases:

i) m=0(mod3)andh > 3;

(ii) m 0 (mod3) and Ah(h — 1) =0 (mod 3).

Proposition 3.1. For m = 0 (mod3) and h > 3, there is an (mh,3,1)-
HPMD of type (m").

Proof: Write m = 3t. Since a TD[3;1] exists for ¢ > 2 by Lemma 2.3, by
applying Lemma 2.1 (1) we reduce the problem to the case of m = 3. Let H =
{h > 3 | his an integer}. It is known [3] that
H = B({3,4,5,6,8}), @3.1)
that is, for every h € H there exists a PBD (X, B) where |X| = h and |B| €
{3,4,5,6,8} for every block B € B
From (3.1) we have a GDD[{3,4,5,6,8},1,{1}; h] forany h > 3. By
Lemma 2.2 we need only to show the existence of a (3s,3,1)-HPMD of type
(3°) fors € {3,4,5,6,8}. Fors = 3,4,5,8, we apply Lemma 2.3 to ob-
tain a GDD[k, 1, 3; 3s] where k = 3 or 4. For s = 6, we start with an RBIBD
RB(3, 1; 15] and consider itas anRGDD[3, 1, 3; 15]. Taking three parallel classes
and adding a new point to the blocks of each parallel class, we obtaina GDD[{3,4 },
1,3;18]. For all these GDD[{3,4},1,3;3s], s € {3,4,5,6,8}, we construct
either a (3,3,1)-PMD or a (4,3,1)-PMD on each block and obtain a (3s,3,1)-
HPMD of type (3°). Here the required (£, 3, 1)-PMD for k = 3,4 comes from
Lemma 2.4. The proof is now complete.
Corollary 3.2, For m =0 (mod 3) and h > 3, there is an (mh, 3, \) -HPMD
of type (m") for any positive integer ).
Proof: The proof follows directly from Proposition 3.1 by taking repeated blocks.
Proposition 3.3. For m # 0 (mod3), h # 6 and Ah(h — 1) = 0 (mod 3),
there is an (mh, 3, \) -HPMD of type (m").
Proof: By Lemma 2.4 an (h, 3, ))-PMD exists when Ah(h — 1) = 0 (mod 3)
and h # 6. This solves the case of m = 1. It is also known by Lemma 2.3 that a
TD[3; m] exists for m > 2. Applying Lemma 2.1 (2), we obtain an (mh, 3, X)-
HPMD of type (m?). The proof is complete.
We shall now concentrate on the remaining case of m # 0 (mod 3),h =6
and any ).
Lemma 34. A (12¢,3,))-HPMD of type ((2t)%) exists foranyt > 1,
Proof: Since a GDDJ[3, ), 2¢; 12¢] exists from Lemma 2.3, we can construct a
(3,3,1)-PMD on each block to obtain the required HPMD.
Form #£0 (mod3) and 2 m,wecan writt m=6k+ 5or6k+ 7,k > 0.
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Lemma 3.5. A (6m,3,1)-HPMD of type (m®) exists form = 6k+ 5 > 11.

Proof: First, we have an RGDDI[3, 1, 3; 6k + 3] from Lemma 2.5. Adding new
points to two of the parallel classes and breaking up the blocks of sizes 3 and 4
with a (3,3,1)-PMD and a (4,3,1)-PMD, we obtain a (6k + 5,3,1)-HPMD of
type (32%+121), say (X, B) where X is a hole of size two and X1, ..., X241
are holes of size three. Let I = {1,2,...,6}. We need the following idempotent
Latin square of order 6:

A= (o) =

N W B -
—-s AW
B = LN
WD -
NN WE =
O\ = N D W S

Next, for each block B = (a, b, c) in the HPMD we form a set of new blocks
D5 = {((s,9),(b,/),(c,a5)) | 4,7 € I}.

Since A is idempotent, D contains a subset
Ig= {((a:i)(bsi);(c, l)) | 1€ I} .

LetBg = DB\IB.

By Lemma 2.1(1), we know that (X x I,UpegDp) isa(6m, 3, 1)-HPMD of
type (182%*112!) with holes X; x I,0 < j < 2k + 1.

Finally, using Proposition 3.1 and Lemma 3.4, we construct an (18,3,1)-HPMD
ora(12,3,1)-HPMD of type (36) or (29), say (X;xI,A;) for0 <j<2k+1
having holes X; x {i},1 € I. Therefore, (X x I, (UpeDp) U(Uogjc2k+145)) is
a(6m,3,1)-HPMD of type (3%2¥+1 q26) having holes X; x {i},i € Tand0 <
7 < 2k+1. This HPMD contains six sub-HPMD (X x {i}, {((a,%),(b,4),(¢c,)) |
(a,b,c) € B}) each isomorphic to the original (X,B). Omitting the blocks in
these sub-HPMDs, we know that (X x I,(UgeBB) U (Uogj<c25+14;)) is a
(6m,3,1)-HPMD of type (m®) having holes X x {i}, i € I. This completes
the proof.

Corollary 3.6. Form = 6k+5 > 11, there exists a(6 m,3,\) -HPMD of type
(m$) for every positive integer ).

Proof: The proof follows directly from Lemma 3.5 by taking repeated blocks.
Lemma 3.7. A (6m,3,))-HPMD of type (m%) exists form = 6k+7 > 13.

Proof: The proof is similar to that of Lemma 3.5 and Corollary 3.6. In this case,
the starting HPMD becomes a (6 k + 7,3, 1)-HPMD of type (32%*141), The
required (24,3,1)-HPMD of type (4 %) comes from Lemma 3.4.
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Lemma 3.8. A (30,3, 1)-HPMD of type (5%) exists.

Proof: Let X = Zps U{oo; --- ,005}. Let X; = {i,i+5,i+10,i+ 15,i+ 20}
for0 < i < 4 and X5 = {oo1,...,00s}. We can construct a (30,3,1)-HPMD of
type (5%) on X having holes Xp, ..., Xs and blocks as follows:

(0,3,7)
(0,6,8
(0,11,9)
(0,12,1)
(0,22,18)

(001,0,1)

(002,0,8)

(003,0,9)

(004,0,19)

(o00s,0,13) developed mod 25.

Lemma 39. A (42,3, 1)-HPMD of type (7%) exists.

Proof: Let X = Zss U{ool,...,om}. Let X; = {i,i+ 5,1+ 10,1+ 15,5+ 20,
i1+25,i+ 30} for0 < i < 4 and X5 = {oo1,...,007}. Wecan construct on X
a (42,3,1)-HPMD of type (7¢) having holes Xy, ..., Xs and blocks as follows:

(0,3,7)
(0,6,8)
(0,11,9)
(0,12,1)
(0,32,28)
(0,16,17)

(001,0,8)
(002,0,9)
(003,0,23)
(004,0,13)
(00s5,0,14)
(006,0,17)

(0,19,13) (o007,0,21) developed mod 35.

Proposition 3.10. For m # 0 (mod 3), there is a (6 m,3,)) -HPMD of type
(m®) except for a nonexisting (6,3, 1) -PMD.

Proof: When m is even, the conclusion follows from Lemma 3.4. When m is
oddand m # 1, 5, 7, the conclusion follows from Corollary 3.6 and Lemma 3.7.
By taking repeated blocks, Lemma 3.8 and Lemma 3.9 will take care of the cases
m =5 and 7. When m = 1, the conclusion follows from Lemma 2.4,

Combining Propositions 3.1, 3.3 and 3.10, we obtain the main result of this
paper.
Theorem 3.11. An (mh,3,)\)-HPMD of type (mP®) exists if and only if

Mi(h—1)m?=0 (mod 3)

except for a nonexisting (6,3, 1) -PMD.
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