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Abstract. A graph G is said 10 be maximal clique irreducible if each maximal clique
in G contains an edge which is not contained in any other maximal clique of G. In 1981,
Opsut and Roberts proved that any interval graph is maximal clique irreducible. In this
paper we generalize their result and consider the question of characterizing maximal
cligue irreducible graphs. .

1. Introduction.

In this paper graphs have no self-adjacent vertices and no multiple edges. Nonempty

complete subgraphs of a graph are called cliques. Maximal cliques of a graph G
are those which are contained in no other clique of G. We write m(G) to denote
the number of maximal cliques of G.

A clique covering of G is a family C of cliques of G with the property that
every edge of G lies in some member of C. If a clique covering C has cardinality
|C| and |C'] > |C] for all clique coverings C' of G, then C is called a minimal
clique covering and |C] is defined to be the clique covering number of G, denoted
by cc(G).

A clique partition C of G is a clique covering in which every edge belongs to
precisely one member of C, and a maximal clique partition is a clique partition in
which every clique is maximal in G. As with clique coverings, a clique partition or
maximal clique partition of minimal size is called minimal. The size of a minimal
maximal clique partition in G is called the maximal clique partition number of G,
denoted by mcp(G). For a discussion of maximal clique partitions, see 7.

Not every graph has a maximal clique partition, so mcp(G) may not be defined.
But, if it is, then clearly

ce(G) < mep(G) < m(Q),

with equality when, for example, G is triangle-free. A graph G will be called
(maximal clique) imreducible if cc(G) = m(G), otherwise G is said to be (max-
imal clique) reducible. It is easy to see that a graph G is irreducible if and only
if each maximal clique in G contains an edge which is not contained in any other
maximal clique of G. An irreducible graph G is said to be strict if mcp(G) is
defined. We then have the following:
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Proposition 1.1, The following statements are equivalent for a given graph G:
(1) )G is strictly ireducible;
) i) mep(G) = m(G);
(3) iii) G contains no induced subgraph isomorphic to H, in Figure 1;
(4) iv) each edge in G is contained in a unique maximal clique of G;
(5) v) mep(Q) is defined, and the set of maximal cliques of G is the only
minimal clique covering of G.

Proof: iv) — v) follows from [6, Remark 2.2] . The proof of the other parts in the
orderi) — ... — v) — i) is easy.

Figure 1
2, Irreducible Graphs.

A subgraph of a graph G is called ocular if it is isomorphic to the graph H>
shown in Figure 1, where ay, bx and cz are not edges of G (but Ty, yz or zz may
or may not be edges of G).

We use M, possibly with a subscript, to denote a maximal clique and V(M)
to denote the set of vertices in M. Similarly C (possibly with a subscript) is a
clique and V(C) itts vertex-set. Clearly a clique is uniquely determined by its set
of vertices. We will use the clique C itself to denote its set of vertices provided no
confusion can occur. The union of two graphs is defined as usual. We first have
the following:
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Theorem 2.1. IfG is reducible, then G contains an ocular subgraph.

Proof: Since ce(G) < m(G), wecan find aminimum number of maximal cliques
in G the union of which contains another maximal clique of G, say

MC MiUM; U...UM;.

Because of the minimality of ¢ we have M N M; € M3 U...U M;. Hence we can
find an edge, say ab, in M N M; but not in M; for any j > 2. We now choose
avertex c € V(M) /V(M;) and let ac € M3, bc € M3. Clearly b ¢ V(M2)
and a ¢ V(M3) (otherwise M3 or M3 would contain the edge ab). So My, M3
and M; are all different and we can choose a vertex z € V(M;) sothatz £ b
(otherwise M3 U {b} would be a clique). Similarly we may select y € V(M3)
and z € V(M) suchthaty o a and z o c. This shows that G contains an ocular
subgraph.
We shall use the following result of Fulkerson and Gross [2] :

Lemma 2.2. A graphG is an interval graph if and only if the maximal cliques of
G can be orderedas My, M, ... , My, so that for any vertexx of G, ifi< j < k
andz € M; N\ M, thenx € M;.

Suppose G contains an ocular subgraph as shown in Figure 1, then by applying

Lemma 2.2 and considering the three maximal cliques M, My, and M, containing
the triangles zac, ybc, and zab respectively, we immediately obtain the following:

Corollary 2.3 (Opsut and Roberts [5]). Any interval graph is irreducible.

Corollary 2.3 implies that Proposition 1.1 is true for an interval graph, which
was proved by Ma and Wallis [3] using a different technique.

Given any collection K of cliques in graph G, we shall say K has the Helly
property (as in [1]) if whenever Ly, L2,... ,Lyarein K and L; N L; # @ for all
i, 7 then the total intersection is nonempty, i.e.,

?
ﬂLi # 0.
i=1

We say K has the strong Helly property if whenever Ly, L3,... ,Lp are in K,

then
P
N
i=1
Clearly, K has the strong Helly property if and only if for any three distinct
cliques Ly,Lyand L3 in K,
ILy N Ly N L3| = min{|L; N Lz|, |L1 N L3|, |L2 N L3|}.
This implies that a graph G contains an ocular subgraph if and only if the set of
maximal cliques of G does not satisfy the strong Helly property. Hence Theorem
2.1 immediately implies the following:

=min{|L; N Lj||1 < i+#j < p}.
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Theorem 2.4, Ifthe set of maximal cliques in a graph G satisfies the strong Helly
property, then G is irreducible.

It would be interesting to give a characterization of irreducible graphs in terms
of the intersection properties of the set of maximal cliques. The following is a
characterization of a different kind:

Theorem 2.5. A graph G is reducible if and only if there exists a set of maximal
cligues
F={Mi,M,,... , M}

such that the set of vertices contained in at least two maximal cliques in F forms
a maximal clique different from those in F.

Proof: The sufficiency is obvious. We now assume that cc(G) < m(G). Let
t be the minimum number of maximal cliques in G the union of which contains
another maximal clique, say

MCMUMU..--UM,.

Define K to be the subgraph of G induced by the set of vertices contained in at
least two members of F = {M;, M3,...,M;}. Then it suffices to show that
V(M) = V(K).

First assume z € V(M) N V(M;) for some i. Then we can select y €
V(M) /V(M;). Now let M; be the clique in F containing the edge xy. Then
Jj #i. Hence z € V(M;) NV(M;) C V(K).

On the other hand, say z € V(M;) N V(M;) for some ¢ and ; satisfying
1<i#j<tandz ¢ V(M). Welet Cp be the clique in G such that V(Cp) =
{z} U (V(M) N V(M) U(V(M) N V(M;)), and Mo be a maximal clique

containing Cy. Then M C Mp U (U Mk) , contradicting the minimality of ¢.

ki
k#j
This completes the proof.

Theorem 2.5 immediately implies the following:

Corollary 2.6. G is ireducible if the following two conditions are satisfied:

(1) i) The union of any three maximal cliques in G does not contain another
maximal clique of G;

(2) ii) Given any four maximal cliques in G with an appropriate ordering,
say My, M2, M3 and Ms, there existz € V(M) N V(M) andy €
V(M;3) NV (My) suchthatz + y inG.

It would be interesting to find irreducible graphs using Corollary 2.6.
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3. Strictly Irreducible Graphs and Clique Graphs,

Given a graph G, let My,..., M, be its maximal cliques. Define a graph H
by V(H) = {M;|]1 < i < m}and M; ~ M;in H ifand only if 1 # j and
M; N Mj # 0. Then we call H the clique graph of G, and write H = G*.

We should point out that the definition of a clique graph given above is slightly
different from that in [8] in the sense that an isolated vertex is also considered as
a maximal clique in [8] . But it is clear that these two definitions are equivalent.
The following was obtained by Roberts and Spencer [8] :

Theorem 3.1. A graph G is a cligue graph if and only if G contains a clique
covering K satisfying the Helly property. Moreover, ifw(G) < 3, wherew(G) =
max {|M|| Mis a maximal clique ofG}, then G is a clique graph if and only ifG
has no subgraph isomorphic to the graph of Figure 2,

Figure 2

Combining Theorems 2.1 and 3.1 we can easily see the following:

Corollary 3.2. Ifw(G) < 3, then G is irreducible if and only if G is a clique
graph.

The proof of Theorem 3.1 given in [8] also implies the following:

Theorem 3.3. Every clique covering F of agraph H satistying the Helly property
induces an irreducible graph G such that H = G*. MoreoverG is strict if and only
If F is a clique partition of H .

Remark: Theorem 3.3 implies that a graph G is a clique graph if and only if it is
the clique graph of some irreducible graph.
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Theorem 3.4. IfagraphG is strictly irreducible, then the set of maximal cliques
of G satisfies the Helly property.

Proof: Since G is strictly irreducible, the intersection of any two maximal cliques
in G contains at most one element by Proposition 1.1. Let M; and M be two
maximal cliques in G such that M1 N M; = {z}. Selectany other maximal clique
M in G having a nonempty intersection with both M; and M;. If z ¢ M, then
we may assume M N M) = {y}and MN M3z = {2}, wherey ¢ M and z ¢ M;.
Now the maximal clique containing {z, y, z} will be different from M;, M> and
M, contradicting the assumption that G is strict. Hence M N My N M; = {z},
which implies that the set of maximal cliques in G satisfies the Helly property.

Corollary 3.5. A graph G is strictly irreducible if and only if G is the clique
graph of some strictly irreducible graph.

Proof: The necessity follows from Theorem 3.3 and Theorem 3.4. We now as-
sume that H is a strictly irreducible graph, and G = H*. It then suffices to show
that @ is strictly irreducible.

Select any four maximal cliques My, M2, M3 and My in H such that M, N
M; = {z}, MsNM; # 0, M3 N M # 0, Ma N M #0,and My N M3 # 0.
Then from the proof of Theorem 3.4 we see that M3 N My = {z}. This implies
that G is strictly irreducible by Proposition 1.1.

Corollary 3.6. A graphG is strictly irreducible if and only if G contains a clique
partition satisfying the Helly property.

Notice that the graph G, in Figure 3 is not a clique graph but is irreducible,
while the graph G in Figure 3 is a reducible clique graph, and hence G is the
clique graph of some irreducible graph by the Remark following Theorem 3.3.
Therefore, Corollary 3.5 is not true if we delete the word “strict”.

Given any graph G, let V2(G) denote the set of vertices of G' contained in at
least two maximal cliques in G. We then have the following interesting result:

Theorem 3.7. Let G be a strictly irreducible graph, and H be the subgraph of G
induced by V5 (G) . Then H is isomorphic to G**, where G** = (G*)*.

Proof:; For any vertex z in H, let M = {M,..., M,} be the set of maximal
cliques in G containing z where r > 2. Then from the proof of Theorem 3.4
we can see that M forms a maximal clique of G*, and hence M corresponds to
a vertex of G**, say =’. We then can easily check that the mapping f : = — z'
from V( H) to V(G**) forms an isomorphism between two graphs H and G**.

Note added in proof. After this paper was submitted, Prof. McKee pointed out to
us that Corollary 3.5 was also obtained in [4] .
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