Heuristic Algorithms for Finding Irregularity Strengths of Graphs

David K. Ganick !
Department of Computer Science
Bowdoin College, Brunswick, ME
USA 04011
and
Jeffrey H. Dinitz
Department of Mathematics
University of Vermont, Burlington, VT
USA 05405

Abstract. Given a graph G with weighting w : E(G) — Z*, the strength of G(w)
is the maximum weight on any edge. The sum of a vertex in G(w) is the sum of the
weights of all its incident edges. G(w) is irregular if the vertex sums are distinct.
The irregularity strength of a graph is the minimum strength of the graph under all
irregular weightings. We present fast heuristic algorithms, based on hill-climbing and
simulated annealing, for finding irregular weightings of a given strength. The heuristics
are compared empirically, and the algorithms are then used to formulate a conjecture.

1 Introduction

Because of the immense size of the search space, most combinatorial problems
do not lend themselves to exhaustive search algorithms. In many cases, however,
the use of local search or hill-climbing algorithms provide a useful alternative to
exhaustive search. In a hill-climbing algorithm (as in all optimization problems)
a cost function is defined on the points in a search space. Heuristics are then
employed which move the instance around the search space without (in general)
increasing the cost. The hope is that, with many applications of the heuristics, a
point in the search space with an acceptably low cost can be found in a very short
time.

Hill-climbing algorithms have proven successful in a number of combinatorial
optimization problems. Local search techniques have been applied to the trav-
eling salesman problem [Li], minimum cost survivable networks [SWK], to the
construction of offshore natural gas pipeline systems [RFRSK] and to the prob-
lem of uniform graph partitioning [KL1]. In each of these cases, a solution is
found in reasonable time which gives a local optimum for the cost function. A
desirable local optimum will be sufficiently close in value to the global optimum
for this cost function. [PS] discusses local search techniques in the context of
optimization problems.

In combinatorial design theory, one wishes to construct subsets (called blocks)
of a set. The blocks must satisfy certain prescribed constraints such as constant

1This author's research was supported by the National Science Foundation under Grant CCR-8909357

JCMCC 8 (1990), pp. 195-208

size and pairwise balance of elements. A block design is constructed by adding
new blocks to an existing partial design. If no new blocks can be added, then a
hill-climbing algorithm will typically delete a-block in order to add a new block.
The cost of a partial design is defined to be the number of blocks missing from
the partial design. Thus, the algorithm succeeds only when a design is found
with a cost of zero; in this sense, a combinatorial design problem is much more
restrictive than many optimization problems... Even with such a restrictive defi-
nition of success, hill-climbing algorithms have proven to be extremely useful.
In design theory, hill-climbing algorithms-have been successfully used to con-
struct Steiner triple systems [S], Strong starters [DS1], one-factorizations of K,
[DS3] and Room squares [DS3]. In each of these instances an exhaustive search
is impractical when the size of the design gets even moderately large due to the
enormous size of the search space. Yet local search not only succeeds, but suc-
ceeds quickly. It is our hope that showing the usefulness of local search techniques
in the context of the irregularity strength of a graph will help to popularize these
techniques for other problems as well.

Based on discussion in [PS], we now review the general idea behind hill-climbing.
Given an instance (F, c¢) of an optimization problem, where F is a feasible set and
¢ is a cost function, choose a neighborhood, N : FF — 2, which is searched at
a point ¢ in F for improvements by heuristics selected from a set H. The general

formof h € H is
an s € N(t) with ¢(s) < ¢(t) if such an s exists
h(t) = .
t otherwise

Typically, when starting a hill-climbing search for a design, the initial partial
design is the empty design. In general, when partial design s can be constructed
from a partial design ¢ with s having no fewer blocks than ¢, then the partial design
s is adopted and the search proceeds from s. The general hill-climbing algorithm
is given below.

algorithm hill-climbing
t « the empty design (or other starting partial design)
while cost (t) # 0do
choose h € H
t — h(2) ((PS])
The art in designing the algorithm is in finding appropriate heuristics which
in general do not return the original point t. When more than one heuristic is
defined, the heuristic chosen at each iteration can be selected randomly (with some
probability), or on the basis of properties of the point ¢t. Note also that the hill-
climbing algorithm may fail to produce a solution to the problem. Thus, it is

essential that the algorithm have a reasonable probability of finding a solution in
an acceptable amount of time.

196

1.1 The Problem

We now describe the graph problem on which we will use our local search heuris-
tics. Let G = (V, E) be a simple graph with no K, component and at most one
isolated vertex. A network G(w) consists of the graph G together with an as-
signment w : E(G) — Z*. The strength 3 of G(w) is defined by s(G(w)).=
max{w(e) : e € E(G)}. For each vertex v € V(QG), define the sum o(v)
of v in G(w) by 3", incident 10y w(€) and call G(w) irregular if for all distinct
u,v € V(G@), o(u) # o(v). The irregularity strength I(G) is defined to be
min{s(G(w)) : G(w) is irregular}. Thus the irregularity strength of a graph
G is the smallest strength of all irregular weightings of G. The problem can also
be described as that of choosing positive weights for the non-zero entries in an
adjacency matrix such that the row sums are distinct. [FJLS]

Figure 1 shows an irregular weighting of strength 5 on the Petersen graph, which
[CJLORS] showed to be the irregularity strength of that graph. (The vertices are
labeled with their respective sums.)

Figure 1: Irregular weighting on the Petersen graph

[CJLORS] proposed studying I(G) . They showed that (3p—2¢)/3 < I(G) <
2p— 3 for a graph G with p vertices and g edges. In [JL] a stronger lower bound
was obtained:

I(G)2>\(G)=mu{((§dk)+i—l)/jiis.i}

where dj. is the number of vertices of degree k in V(G).
The problem of studying irregularity strengths of graphs has proven to be fairly
difficult. There are not a great many graphs for which the irregularity strength is

197

known. [CJLORS] showed that I(K,,) = 3 and I(K2424) = 3; I(P;) was also
determined. [G] showed that I(K31 2041) = 4. Work has also been done on
binary trees, dense graphs, and the disjoint unions of paths, cycles and complete
graphs ([CSS], [FJKL], [KL2]). Recently, [EHLW1] determined the irregularity
strengths of wheels, k-cubes and 2 x n grids. In each of these cases they found
that I(G) = MG) or M(G) + 1 and they conjecture that if T" is a tree, then
I(T) = M(T) or \M(T) + 1. [L] surveys results on irregularity strengths of graphs.

1.2 Overview of Paper

In addition to hill-climbing, we will discuss the effectiveness of a related simu-
lated annealing heuristic. In brief, simulated annealing is a form of local search in
which the heuristics are allowed, with some probability, to increase the value of
the cost function. Typically, the probability decreases as the cost decreases. This
method is discussed in [KGV] and has proven to be useful in some combinatorial
optimization problems (see [W] for instance).

Section 2 describes our set of heuristics, and Section 3 presents the algorithms
for irregularly weighting graphs. Section 4 gives some empirical results on the
effectiveness of the algorithms and Section 5, the conclusion, shows their use in
formulating a conjecture on a specific class of graphs.

2 The Heuristics

This section presents the set of heuristics on which the algorithms are based. The
heuristics provide methods for assigning weights to unweighted edges, and chang-
ing the weights on previously weighted edges. We first provide some definitions.
Let G, be a graph.

(1) Forallv € V(G), v is completed if all (u,v) € E(G) are weighted. By
extension, G is completed, or completely weighted , if all e € E(G) are
weighted.

(2) For all completed distinct u, v € V(G), u and v conflict if o(u) = a(v).

(3) The cost of a partial weighting without conflicts is the number of un-
weighted edges.

Each heuristic is designed to preserve the following properties:

(1) For all weighted e € E(G), 1 < w(e) < s where s is the strength of the
attempted weighting;

(2) For all completed u,v € V(QG), if o(u) = og(v),thenu = v.

We use four heuristics which preserve these properties: Climb, Scan, Anneal, and
Rank.

2.1 Climb Heuristic

The Climb heuristic randomly selects an unweighted edge e = (¢,u). The set
{1,2...s} is then partitioned into three mutually disjoint sets Wo, W1, and W3,

198

where W; contains the weights that will cause i of the vertices in {t, u} to be in
conflict with some vertex in V(G). If w € {1,2 ... s} causes ¢ and u to conflict
only with each other, w is put in W;.

procedure Climb

e «— randomly selected unweighted edge (¢,u) € E(GQ)

partition {1,2 ...s} into Wy, Wi, and W, based on e

if Wo # ¢ then weight(e) «— arandom w € Wy

else if W, # ¢ then
weight(e) «— arandomw € W,
v « the vertex that conflicts with a vertex in {¢, u}
unweight a random edge incident on v

As is typical with climbing heuristics, a sideways step is permissible if the local
search does not yield a point with a smaller value for the cost function. However,
downhill steps are not permitted; choosing a weight from W; is likely to require
unweighting two edges. Thus, Climb takes no action when Wy = W) = ¢.

By maintaining an array which maps sums onto completed vertices, we are
able to determine in constant time the number of conflicts that would occur by
assigning a particular weight to a given edge. The time complexity of the heuristic
is governed by the number of weights partitioned into the W sets. Therefore, the
time complexity of Climb is O(s).

2.2 Scan Heuristic

Climb is an example of a strict hill-climbing heuristic; it does not permit the cost
function to grow, and is restricted in the ways it can move the partial solution about
the search space. Thus, the Climb heuristic can become trapped in a local opti-
mum. Since the only acceptable solutions are those with a zero cost, the algorithm
must have a heuristic to escape local optima.

To extend the metaphor of hill-climbing, we use another heuristic to scan the
horizon of the solution space for a point that has an altitude equal to that of the
current partial solution. If such a point can be found, the algorithm hops directly to
that point in the hope that it is on the slope of a hill with a higher peak. (Since we
are using the metaphor of hill-climbing, an uphill step reduces the cost function
and approaches a solution. A downhill step increases the cost function and is a
step away from a complete solution.) The following is the Scan heuristic.

199

procedure Scan
e « randomly selected weighted edge in B(G)
from {1,2 ...s}, form Wy basedon e
if Wo — weight (e) # ¢ then
weight (e) « arandom element from Wy — weight (e)

Scan attempts to reweight a weighted edge with a new weight that will not cause
either of the edge’s endpoints to conflict with other vertices in the graph. Again,
the time complexity of this heuristic is governed by the partitioning of the set of
weights. Thus, Scan is O(s).

2.3 Anneal Heuristic

Simulated annealing is similar to hill-climbing; where hill-climbing uses a scan-
ning heuristic to escape local optima, simulated annealing allows an occasional
downhill step. Simulated annealing uses a cooling schedule to regulate the prob-
ability with which the algorithm will take a downhill step (or, using the metaphor
of annealing, jump to a higher energy level). According to the fixed schedule,
the state is eventually frozen and the current local optimum is accepted. Since
we are searching for global optima, we do not consider the state frozen until the
algorithm finds a state with a zero cost. In the Anneal heuristic, the probability p
can be calculated as a function of the cost of the current partial weighting, or can
be fixed for the duration of the algorithm. The pseudo-code “with probability p”
can be interpreted as a function which returns true with a probability of p, and
otherwise retumns false .

procedure Anneal
e « randomly selected unweighted edge (¢,u) € E(G)
partition {1,2 ...s} into Wy, W, and W, based on e
if Wo # ¢ then weight (e) «— arandom w € Wp
else if (W, ¥ ¢) and (with probability p) then
weight (e) «— arandom w € W
v; « the vertex that conflicts with ¢
unweight a random edge incident on v;
if v, € V(&) that conflicts with u then
unweight a random edge incident on vy

200

else if W, # ¢ then
weight (e) «— arandom w € W)
v « the vertex that conflicts with a vertex in {¢,u}
unweight a random edge incident on v

This heuristic is an adaptation of the Metropolis algorithm [MRRTT]. The
Metropolis algorithm permits a downhill step only when ro uphill or sideways
steps are available. In our algorithms, such a heuristic sometimes leads to an infi-
nite loop of sideways steps between two neighboring points in the solution space.
Thus, with some probability, we take a downhill step even when a sideways step is
possible. An alternative would be to use the Metropolis algorithm in conjunction
with some other form of sidestepping (such as Scan).

2.4 Rank Heuristic

We define the rank of an edge e = (u,v) € E(G) to be r(e) = degree(u) +
degree(v). Rank is a greedy heuristic in that it reserves large weights for edges
with high rank, since the endpoints of such edges will tend to have large sums
in a completed irregular weighting, and small weights for edges with low rank.
RankCount is an array where

RankCount[i] = |{e : e € E(G), r(e) < i}|

procedure Rank
fori — 1to|E(G)|do
weight (e; = (1,u)) «— |RankCount[r(ei)] * s/(|E(G)|+ 1)|1+ 1
if 3v; € V(&) that conflicts with ¢ then
unweight a random edge incident on vy
if 3v2 € V(QG) that conflicts with u then
unweight a random edge incident on v,

Figure 2 shows a graph after a single application of Rank. The edges of lower
rank were assigned lower weights. The bottom edge was initially assigned a
weight of 2; however, weighting the upper horizontal edge with 3 created a con-
flict between 2 vertices (both of which had vertex sums of 4). The conflict was
resolved by unweighting the bottom edge.

Rarely can a single application of Rank successfully weight all of the edges in
a graph, and experimental evidence indicates that it is not worthwhile to repeat-
edly use Rank. However, Rank often generates a partial weighting that is close to

201

Figure 2: A graph after an application of Rank

some complete irregular weighting. Thus, Rank is useful for generating a partial
weighting as input to the other heuristics.

The rank of each edge is determined in constant time, and the RankCount array
is computed in time proportional to O(|E(G)|). Using the array described in
Climb, conflicts at each step are detected and resolved in constant time, Therefore
Rank is O(|E(G))).

3 The Algorithms

This section presents our algorithms for finding irregular weightings of strength
s on a graph G. If such an algorithm has made a large number of applications
of heuristics without finding a complete irregular weighting, one may reasonably
conclude that the current partial weighting is a long way down a blind alley. (Of
course, the very next application of a heuristic might complete the weighting.) We
therefore find it useful to define a threshold function, T(G), in order to force an
algorithm to unweight some edges in G if T'(G) applications of heuristics have
been made without yielding a completed weighting. The algorithm then resumes
applying heuristics, after resetting the count toward the threshold to zero and un-
weighting all edges. Since an algorithm can quickly get to within relatively few
edges of a complete weighting, we choose to unweight all edges whenever the
threshold is reached. If the threshold function is well chosen, we have found that
n tries of T'(G) steps are more likely to yield a solution than one try of nT'(G)
steps.

Each of the following algorithms repeatedly selects and applies heuristics to
partial weightings. However, in all cases the Rank heuristic is applied only when
all edges are unweighted; either at the start of the algorithm or when the threshold
has been attained.

The input to all of the algorithms is a strength s and an undirected graph G with
all edges unweighted. The algorithms have additional algorithm-specific param-
eters. The Cost always refers to the current number of unweighted edges. If the
algorithm terminates on a given instance, its outputis w : E(G) — {1,2...s}
such that G(w) is irregular.

202

3.1 Irregularity Strength 1 (IS-1)

The general strategy behind this algorithm is to repeatedly apply the Climb heuris-
tic until some number of consecutive applications have not yielded an improve-
ment (that is, a decrease in cost). At that point the Scan heuristic is applied for a
number of times before resuming Climbing. All edges are unweighted when the
threshold is attained, and Rank may be performed at that time. There are three
parameters to this algorithm:

1. Threshold The number of heuristic steps required to trigger unweighting
all edges.
2. ClimbFactor A factor used in determining the number of unsuccessful
Climbs required to trigger scanning.
3. ScanQuotient A quotient used in determining the number of times Scan is
applied.
algorithm IS-1
optionally perform Rank
Steps — 0
repeat
Stuck «— 0
OldCost «— Cost
repeat
Climb ; Steps «— Steps + 1
if Cost = OldCost then Stuck « Stuck + 1
else
OldCost « OldCost — 1
Stuck « 0
until (Cost = 0) or (Stuck > Cost x ClimbFactor) or
(Steps > Threshold)
if (Cost > 0) then
for i — 1 to (|E(G)| — Cost) /ScanQuotient do
Scan; Steps « Steps + 1
if (Cost > 0) and (Steps > Threshold) then
unweight all edges
optionally perform Rank
Steps — 0
until Cost =0

203

3.2 Irregularity Strength 2 (IS-2)

The generic description of hill-climbing in Section 1 includes a step where the
algorithm chooses the next heuristic to apply. Algorithm IS-1 makes the decision
between Climb and Scan on the basis of the state of the computation. In contrast,
IS-2 randomly selects (probabilistically) either Climb or Scan. At each step, al-
gorithm IS-2 applies Climb with a probability p, and Scan with a probability of
1 — p. As in IS-1, all edges are unweighted when the threshold is attained, and
Rank may be performed when all edges are unweighted.

algorithm IS-2
optionally perform Rank
Steps — 0
repeat
if with probability p then Climb
else Scan
Steps «— Steps + 1
if (Cost > 0) and (Steps > Threshold) then
unweight all edges
optionally perform Rank
Steps — 0
until Cost =0

3.3 Irregularity Strength 3 (IS-3)

IS-3 is similar in design to IS-2; however, Anneal is the only heuristic applied
by IS-3. The parameter p is used by Anneal to determine when a downhill step is
permissible.

algorithm IS-3
optionally perform Rank
Steps — 0
repeat
Anneal ; Steps +— Steps + 1
if (Cost > 0) and (Steps > Threshold) then
unweight all edges
optionally perform Rank
Steps — 0
until Cost =0

204

4 Empirical Results

Two of the major factors that determine the irregularity strength of a graph are
its regularity and the density of its edges. These factors guided our choice of
classes of graphs for applying the algorithms; we chose K, X, (the classof nxn
grids), and random graphs in which each possible edge appears with a probability
of 5 (|E(G)| = [VI* (V] - 1)/4).

On each graph we gave each algorithm (under various parameters) 100 tries,
where a try consists of running the algorithm until either a complete irregular
weighting was found, or the threshold was reached for the first time. For each
algorithm and set of parameters we recorded the frequency with which tries were
successful, and the average number of O(s) operations used during successful
tries. (These are labeled succ rate and ops/succ in Tables 1-3.) The figures in
the tables do not include the single O(|E(G)|) step included when Rank was
performed. In all tries we used [A(G)] as the strength of the attempted irregular
weighting.

Tables 1-3 show the results of applying these algorithms to X ;o using strength
of I(X10) = 26. (Since there are 4 vertices of degree 2, 4(n — 2) vertices of
degree 3, and (n— 2)? vertices of degree 4 in X,, then \(X,) = (2 + 1)/4.)
A threshold of 50,000 was used for all of these experiments. Similar results were
obtained for several graphs in X,,, K, and random graphs as described above.
These results are reported in [GD].

ClimbFactor 1 4 16

ScanQuotient 1 4 16 1 4 16 1 4 16
noRank [succrate| .10 | 33 | 62 | 24 | 53 | 49 | 44 | 38 | .42
ops/fsucc [36001 {27510 22070|27442{22161}19107 21379 [19600] 19433
with Rank | succ rate| .11 381611 32[.56]|.71].50] 64| .53
opsfsucc [29295]30818]21169 [31165] 19838 | 14860] 22907 | 20403 | 19260

Table 1: Algorithm IS-1 applied to Xo

Climb probabilty] .6 Ni 8 9 | 95| .9
noRank |succrate| 41 | .47 41 121) .17] .2
ops/succ | 19039 2033921027 | 24297 23950 28505

with Rank | succ rate| .50 ;56 46 43_5 29 | .05
ops/succ | 1229918747 18811 [24367 2655831595

Table 2: Algorithm IS-2 applied to X10

As a basis for comparison, we applied a simple backtracking algorithm to small
grids in X, using A (X,,) as the strength. The number of O(s) operations required

205

Anneal probabilty |.1] .05 | .01 | .005 |Cest/|E(G)|
noranking |succrate]0]| .05 | .25 | .34 .19
ops/succ| [23930]1985425706 16520
with ranking |succrate| O .07 | 62 | .53 .49
ops/succ] |[21872]19954|21418 20921

Table 3: Algorithm IS-3 applied to X0

to find the first solution is 4 operations for X3 , 372 operations for X3, and 256,670
operations for Xs; the backtrack algorithm applied to Xs was halted, prior to
finding a solution, after 213,000,000 operations. Since |E(X,)| = 2(# — n),
the complexity of backtracking applied to X, is O(5(™)). We note that using
our algorithms we find complete irregular weightings for X typically in under 7
seconds, while backtracking did not succeed in 122 hours.

All experiments reported in Tables 1-3 were carried out on an Apple Macin-
tosh SE with a 68000 processor. As noted above, all operations are O(s). Some
approximate rates of execution (rounded to the nearest 5 operations per second)
are given in Table 4.

s 37 (10]21]26]31(37
O(s) ops/sec]IS-1]405]270]235[140{115[100]|86
1S-2]180|170{150[105] 90 | 80 |70
1S-3/150]125{100] 60 | 50 | 45 |40

Table 4: Approximate rates of execution based on strength of weighting

These three algorithms behave similarly on other graphs when appropriate thresh-
olds are chosen. For example, IS-1 applied to X¢ required a threshold of 5,000
for similar results, and applied to X2 required a threshold of 250,000. On K,
the use of Rank made a dramatic difference. For example, on K3, algorithm IS-1
(with ClimbFactor of 16, ScanQuotient of 16, and threshold of 100,000) without
Rank yiclded a success rate of .1; while with Rank, its success rate was .61 and
almost all successful weightings were found in fewer than 5,000 operations. As n
grows, increasing ClimbFactors and ScanQuotients appeared to improve the per-
formance of 1S-1 on K, Rank also yielded significant speed-up on the random
graphs containing each edge with probability 0.5.

5 Conclusions

We have described several algorithms for irregularly weighting graphs. The al-
gorithms are based on hill-climbing heuristics and are probabilistic in nature. As
such, the algorithms are not guaranteed to terminate. However, we have shown
the algorithms to be of great practical use. For example, our algorithms have

206

generated irregular weightings on random graphs of about 1,000 edges, whereas
backtracking becomes impractical for similar graphs of fewer than 100 edges.

In general, hill-climbing (and related techniques) excels over exhaustive search
techniques when the search space is large and the density of solutions in the space
is sufficiently great. The problem of irregularly weighting graphs is well suited
to hill-climbing, as is shown experimentally by our results, and suggested analyt-
ically by the result in [EHLW2]. We believe these experimental techniques are
broadly applicable. For example, [DS2] successfully applied these techniques to
the problem of finding Room squares of side n. In that application, the search
space is large, O(n(™)), but the solution space is also large, O(e‘™). [DS2]

The class of graphs on which we concentrated our efforts were the n x n grids
Xn. We have used our algorithms to irregularly weight all of the graphs in X, for
2 < n < 23, with a strength of the known lower bound [A(X,)] ({GD)). Thus,
we offer the following conjecture.

Conjecture: I(X,) = [MXa)].n> 1.

In finding irregular weightings, lower thresholds can be used than those used
here. In most of our experiments, the median number of operations for successful
tries was less than half of the threshold. For example, one experiment using IS-1
on X0 had a success rate of .59 for 25,000 operations, and a success rate of .71
for 50,000 operations. Thus, in practice, a lower threshold can produce the first
complete weighting in overall fewer operations.

We are continuing this research by expanding our repertoire of local search
techniques, and attempting to better understand the factors that govemn the perfor-
mance of a given heuristic.

References

[CILORS] G. Chartrand, M. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, and
F. Saba, Irregular networks, in “Proc. 250th Anniv. Conf. on Graph Thry”,
Fort Wayne, 1986.

[CSS] L. Cammack, G. Schrag and R. Shelp, Irregularity strength of full d-ary
trees, preprint.

[DS1] J. Dinitz and D. Stinson, A fast algorithm for finding strong starters,
SIAM J. Alg. and Disc. Math. 2 (1981), 50-56.

[DS2] J. Dinitz and D. Stinson, On nonisomorphic Room squares, Proc. AMS
89:1 (1983).

[DS3] J. Dinitz and D. Stinson, A hill-climbing algorithm for the construction
of one-factorizations and Room squares, SIAM J. Alg. and Disc. Math. 8
(1987),430-438.

[EHLW1] G. Ebert, J. Hemmeter, F. Lazebnik, and A. Woldar, Irregularity
Strengths of certain graphs, preprint.

207

[EHLW?2] G. Ebert, J. Hemmeter, F. Lazebnik, and A. Woldar, On the number
of irregular assignments on a graph, preprint.

[FIKL] R. Faudree, M. Jacobson, L. Kinch, .and J. Lehel, Irregularity of dense
graphs, preprint.

[FILS] R. Faudree, M. Jacobson, J. Lehel, and R. Schelp, Irregular Networks,
Regular Graphs, and Integer Matrices with Distinct Row and Column Sums,
preprint.

[GD] D. Garnick and J. Dinitz, “Empirical results of heuristic algorithms for the
irregular weighting of graphs”, C.S. Rep. 89-1, Bowdoin College, Brunswick,
ME,, 1989.

[G] A. Gyarfas, The irregularity strength of K, is 4 for odd m, Disc. Math..

[JL] M. Jacobson and J. Lehel, A bound for the strength of an irregular network,
preprint.

[KL1] B. Kemighan and S. Lin, An efficient heuristic procedure for partitioning
graphs, BSTJ 49:2 (1970), 291-307.

[KL2] L. Kinch and J. Lehel, The irregularity strength of t P3, preprint.

[KGV] S. Kirpatrick, C. Gelatt, and M. Vecchi, Optimization by simulated an-
nealing, Science 220:4598 (1983), 671-680.

[L1J. Lehel, Facts and quests on degree irregular assignments, in “Proc. of 6th
Intntl. Conf. on Graph Theory and Applications”, Kalamazoo, MI, 1988 (to
appear).

[Li] S. Lin, Computer solutions of the travelinig salesman problem, BSTJ 44:10
(1965).

[MRRTT] N. Metropolis, A. Rosenbluth, M.Rosenbluth, A. Teller, and E. Teller,
Equation of state calculations by fast computing machines, J. Chem. Phys 21
(1953), 1087-1092.

[PS] C. Papadimitriou and K. Steiglitz, “Combinatorial Optimization: Algo-
rithms and Complexity”, Prentice Hall, Englewood Cliffs, N.J., 1982, pp.
454-481.

[RFRSK] B. Rothfarb, H. Frank, D. Rosenbaum, K. Steiglitz, and D. Kleitman,
Optimal design of offshore natural-gas pipeline systems, OR 18:6 (1970),
992-1020.

[S] D. Stinson, Hill-climbing algorithms for the construction of combinatorial
designs, Annals of Disc. Math. 26 (1985), 321-334.

[SWK] K. Steiglitz, P. Weiner and D. Kleitman, The design of minimal cost
survivable networks, IEEE Trans. Cir. Theory 16:4 (1969), 455-460.

[W] L. Wille, The football pool problem for. 6 matches: a new upper bound
obtained by simulated annealing, J. Combinatorial Theory (A) 45 (1987),
171-177.

208 -

