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Abstract. Let k and £ be nonnegative integers not both zeroand D C N — {1}. A
(connected) graph G is defined 10 be (k, £, D) -stable if for every pair u, v of vertices of
G withdg(u,v) € D and every set § consisting of at most k vertices of V(G) — {u, v}
and at most £ edges of E(G), the distance between u and v in G — S equals dg(u, v).
For a positive integer m let N> = {z € N | z > m}. Itis shown that a graph is
(k,£,{m})-suable if and only if it is (¥, £, N>m)-stable. Further, it is established that
for every positive integer =, a graph is (k + z,£,{2})-stable if and only if it is (£, €+
x,{2})-suble. A generalization of (k, £, {m})-stable graphs is considered. For a planar
(k,0,{m})-stable graph, m > 3, a sharp bound for k in terms of m is derived.

1. Characterizations of distance stable graphs.

(Graph Theory terminology not presented here appears in [3].) Ali, Boals and Sher-
wani [1] defined a connected graph G to be vertex (edge) distance stable if the
distance between nonadjacent vertices is unchanged after the deletion of a vertex
(edge) of G. They showed that a graph is vertex distance stable if and only if it
is edge distance stable. Thus, for convenience, we refer to vertex or edge distance
stable graphs simply as distance stable graphs. Further, distance stable graphs are
characterized as those which satisfy for every pair u, v of nonadjacent vertices,
N(u) N N(v) = @or [N(u) N N(v)| > 2. This characterization thus suggests
an efficient way of determining whether a graph is distance stable. Moreover, this
characterization of distance stable graphs has the following alternative statement.
A graph G is distance stable if and only if every pair of vertices at distance 2 apart is
connected by at least two internally disjoint paths, or equivalently, at least two edge
disjoint paths of length 2. Intuitively this result implies that if “short™ distances be-
tween pairs of vertices (namely those at distance 2) are preserved after the deletion
of a vertex or edge, then so are “longer” distances between pairs of vertices.
Observe that distance stable graphs are certainly 2-connected, since the dele-
tion of a vertex in such a graph does not destroy the property of connectedness be-
tween pairs of nonadjacent vertices. However, the property of being distance stable
is much stronger than the property of being 2-connected. For example, every cycle
of length at least 5 is 2-connected but not distance stable. This observation suggests
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a generalization of distance stable graphs. A connected graph G is k-vertex (edge)
distance stable if the distance between (nonadjacent) vertices is unchanged after
the deletion of any set at most & vertices (edges). The following result provides a
simple characterization of these graphs. We use do(u, v) to denote the distance
between vertices 4 and v in a graph G.

Proposition 1. For a graph G and integer k > 1 the following are equivalent:

(i) G is k-vertex distance stable.
(ii) G is k-edge distance stable.
(iii) For every pairu, v of nonadjacent vertices of G either N(u) N N(v) = §
or|[N(u) NN(v)| > k+ 1.
(iv) For every pairu, v of nonadjacent vertices of G there existk+ 1 internally
disjoint u — v paths of length dg(u,v).

Proof: (i) = (ii). Suppose G'is k-vertex distance stable. Let E = {ey, ez, ... ,ex}
be any set of k edges of G. Let u and v be any two nonadjacent vertices of G.

Foreach i (1 < i < k) let v; be a vertex different from u and v that is incident

with e;, andlet V = {v; | 1 < ¢ < k}. Since G is k-vertex distance stable,

dg-y(u,v) = dg(u,v). Alsosince G—V C G—E,dg_y(u,v) > dg_g(u,v)

2 dG(u') 1)). So dG-B(u; ‘U) = dG(u, ‘U).

(ii) = (iii). Suppose G is k-edge distance stable. Let u and v be a pair of non-
adjacent vertices with N(u) N N(v) = §. Suppose |[N(s) N N(v)| < k. Let
{v1,v2,...,9.} = N(u)NN(v) and E = {uv; | 1 <i < n}. Then|E| < kand
de-g(u,v) > dg(u,v) = 2, contrary to assumption. So if G is k-edge distance
stable, then |N(u) N N(v)| > k + 1 for every pair u, v of vertices at distance 2
apartin G.

(iii) = (i). Let u, v be any pair of nonadjacent vertices of G and V' a subset of at
most k vertices in V(G) — {u,v}. Let d = dg(u,v). Assuming (iii) we prove
by induction on d that dg_y(u,v) = dg(u,v). If d = 2, then the result follows
since [N(u) N N(v)| < k + 1. Suppose now that d > 3 and that for every
subset W of at most k vertices and for every pair z, y of nonadjacent vertices of
G — W with dg(z,y) = d — 1, we have dg_w(z,y) = dg(z,y) = d - 1.
Let u, v be a pair of nonadjacent vertices in G — V with dg(u,v) = d. Let
P:u=u,uj,...,u4.1 = v be ashortest u — v path in G.

Let V! = V —{uz }. Then V' contains at most k vertices. Since dg(us, ugs1) =
d — 1, our inductive hypothesis implies that G — V' contains a u; — ug,; path P’
of length d — 1. Observe that every vertex of P’ different from u; also belongs to
G — V. Let u’ be the vertex that precedes ug.; on P'. Then dg(u,v’) = d— 1.
So by our inductive hypothesis G — V contains a u — u’ path Q' of lengthd — 1.
Thus Q' followed by the path v/, u4.; is a v — v path of length d in G — V. Thus
dg_v(u,v) =d.
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Clearly (iv) = (i). We now show that (i) = (iv). Suppose there exists a pair u,
v € V(G) with dg(u,v) = d > 2 such that G has at most k internally disjoint
u — v paths of length d. Let G’ be the directed graph obtained from all u — v
paths of length d in G by assigning an edge zy the direction (z, y) if = precedes
y on a shortest u — v path of G. Then the maximum number of internally disjoint
directed u — v paths in G is t < k, since every directed u — v path in G’ must
have length d. Thus by Menger’s theorem there exists a set S of ¢ vertices whose
removal separates u and v in G'. Thus G — S contains no u — v path of length d.
This implies that G is not k-vertex distance stable. |

As remarked earlier, every vertex distance stable graph is 2-connected. Simi-
larly every k-vertex distance stable graph is (k + 1)-connected; but the converse
does not hold. For example, let G be the graph obtained from p > 5 copies of
Ky, denoted by Hy, Ha,... , Hp, by joining every vertex of H; to every vertex
of Hiy1 (1 <€ 1 < p and subscripts expressed modulo p). Then G is (k + 1)-
connected, but G is not k-vertex distance stable. Note that all complete graphs are
k-vertex distance stable for all k£ € N. Therefore we now consider graphs that are
not complete.

The connectivity (edge-connectivity) of a noncomplete connected graph G is a
measure that determines the maximum integer x()) such that after the removal of
any set of fewer than x vertices () edges) every remaining pair of vertices is still
connected by a path. Since ( k+ 1)-connected graphs need not be k-vertex distance
stable, this observation suggests the study of a new parameter. The vertex-deletion
(edge-deletion) distance stability xs(G)(),(G)) of a graph G is the maximum
integer x, (),) such that after the removal of any set with fewer than «, vertices
(), edges) distances between nonadjacent vertices are still preserved. By Proposi-
tion 1, we need only determine |N'(u) N N(v)| for all pairs of vertices at distance
2 apart. Then both x,(G) and ),(G) equal the minimum overall these quantities,
that is,

5s(G) = M(G) = min{|N(u) N N(v)| | u,v € V(G) and dg(u,v) = 2}.

Thus both x,(G) and ),(G) can be computed efficiently.

In 1967 Beincke and Harary [2] pointed out that up to that time the problem
of disconnecting a pair of vertices and thus a graph by deleting a combination
of vertices and edges had been overlooked. So they defined for a given G, with
connectivity «, the connectivity function f: {0,1,... ,k} = NU{0} as follows:

f(k) =min{A(G-8) | S C V(G and |S| = k}
and provided a characterization of these functions.

These concepts of the connectivity function of a graph and vertex distance and
edge distance stability of a graph suggest another measure of “distance stability”
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in a graph. We say that a graph is k-vertex £-edge distance stable if for every set
S with at most k vertices and at most £ edges and every pair u, v of nonadjacent
vertices of G — S, we have dg_gs(u,v) = dg(u,v). The next result gives a
characterization of k-vertex £-edge distance stable graphs.

Proposition 2. Let G beagraph and k and £ nonnegative integers withk+£ > 1.
Then the following are equivalent:

() G is (k+ £)-vertex distance stable.
(ii) G is (k+ £)-edge distance stable.
(iii) @ is k-vertex £-edge distance stable.

Proof: We have already shown that (i) <> (ii). To complete the proof we need
only observe as in the proof of Proposition 1 that (i) => (iii) and (iii) = (ii). 1

The results of Propositions 1 and 2 depend on the fact that not all shortest paths
between pairs of vertices at distance 2 apart are destroyed by the deletion of a
specified number of vertices and/or edges. Since edge-disjoint paths of length at
most 2 between a pair of vertices are also internally disjoint and vice versa, the
equivalence of k-vertex distance stable graphs and k-edge distance stable graphs
is less surprising. With these observations in mind we consider yet another in-
terpretation and extension of distance stable graphs. Let k and £ be nonnegative
integers not both 0 and suppose D C N — {1}. We say that a graph is k-vertex
£-edge D-distance stable, denoted by (k, £, D)-stable if for every set S of at most
k vertices and at most £ edges and every pair u, v of vertices in G — § with
dg(u,v) € D we have dg_gs(u,v) = dg(u,v). Form > 2 an integer let
Nom = {m,m+ 1,m + 2,...,}. Then the following result is an immediate
consequence of Propositions 1 and 2.

Corollary. Foragraph G and nonnegative integers k and £ withk+ £ > 1, the
following are equivalent:
(i) Gis (k+2,0,{2})-stable.
(ii) G is (0,k+£,{2})-stable.
(ii) G is (k+£,0,N>2)-stable.
(iv) G is(0,k + £, Ny )-stable.
(v) G is(k,2, N»,)-stable.

If2 € D, then it can be shown as in the proof of Proposition 1 that a graph G
is (k + x,2, D)-stable if and only if G is (k,£ + z, D)-stable. Observe that if a
graph is (£,0, {3})-stable, then it is also (0,2, {3})-stable. Suppose now that G
is (0,2, {3})-stable. Assume G is not (£,0, {3})-stable. Then there exists a pair
u, v of vertices at distance 3 in G and a set of at most £ vertices whose removal
increases the distance between u and v. Let S be such a set with the smallest
number of vertices. Then § C N(u) U N(v). However, then the removal of
{uz | £ € N(u) N S} U{yv | y € N(v) N S} also increases the distance from
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u to v. Hence G is not (0,£, {3})-stable. Thus if a graph is (0,#, {3})-stable,
thenitis (£,0,{3})-stable.

However, if m > 4 and a graph is (0,¢,{m})-stable, then it need not be
(£,0,{m})-stable, in factnoteven (1,0, {m})-stable. Let H} & H3 & H,pey &
Ky andfor2 <i< mandi#3 let H; ¥ K. Now define G to be the graph
obtained from URZi! H; by joining each vertex of H; to every vertex of H;. for
1 < i < m, (see Figure 1). Then G is (0,4, {m})-stable but not (1,0,{m})-
stable.

H
] K’ H3 Hy Hg Ho e

However, we have the following:

Proposition 3. Forintegers m > 2,k > 0,2 > 0 where k+£ > 1 anda
graph G the following are equivalent:

(i) G is (k,2,{m}) -stable.

(i) G is (k,2, Nyy,)-stable.

Proof: Clearly (ii) = (i). Suppose now that G is (k,£,{m})-stable. Let S be
any set of k vertices and £ edges and let u, v be vertices of G — S such that
de(u,v) = d > m. We prove by induction on d that dg_g(u,v) = d. If d =
m, then the result follows from the hypothesis. Suppose thus that 4 > m and
that whenever T is a set of at most k vertices and at most £ edges and z,y €
V(G) — T such thatdg(z,y) = d— 1, thendg_r(z,y) = dg(z,y). Let P:u =
U1,42,...,%d, 81 = v be a (shortest) v — v path in G. Then dg(ua,v) =
d—1. Soif & = § — {uz}, then by the inductive hypothesis dg_g:(u2,v) =
do(uz,v) =d—1.LetQbeauy; —vpathinG — S of lengthd — 1. Let u’ be
the vertex that precedes v on this path. Then dg(u;,u’) =d—1andu' ¢ S. So
by the inductive hypothesis there is a u; — u’ path Q' of lengthd — 1inG - S.
Then Q' followed by the path u’, visau — v path of length din G — S. ]

If@ # D C N—{1}and m is the smallest element of D, then Proposition 3 im-
plies that a graph is ( k, £, {m})-stable if and only if it is (k, £, D)-stable. We now
focus our attention on ( k, £, {m}) -stable graphs where m > 2 is an integer. To de-
termine the maximum k for which agraph G is (£, 0, {m})-stable, first determine
all pairs of vertices at distance m apart. Suppose u, v is a pair of vertices such that
dg(u, v) = m. Then a breadth-first search can be used to determine the subgraph
induced by all those vertices that lie on some shortest u — v path. Denote this sub-
graph by G'(u, v). Let x(u, v) be the smallest number of vertices whose removal
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disconnects u and v in G(u, v). Then k = min{x(u,v) — 1 | u,v € V(G) and
dg(u,v) = m}. Thus the maximum k for which G is (k,0,{m})-stable can be
computed efficiently. Similarly the maximum £ for which G is (0, £, {m})-stable
can be found efficiently.

Thus far we have been concerned with graphs that preserve distances between
pairs of vertices, a given distance apart, after the deletion of any set that contains
at most a given number of vertices and/or edges. In particular, if G is (k, £, D)-
stable u, v € V(G) with dg(u,v) € D and S is a set of at most k vertices of
V(&) —{u, v} andatmost £ edges of G, then G — S contain at least one u — v path
of length dg(u, v). We may well wish to require that G — S contains r internally
disjoint u — v paths of length dg(u, v) for some r at least 2. With this in mind
suppose k, £, and r are integers with k+£ > 1 andr > 1 andthat D > N —{1}.
Then we say that a graph G is (k, £, D, r) -stable if for any pair u, v € V(G) such
that dg(u,v) € D and any set S of at most k vertices of G — {u, v} and at most
£ edges of G, the graph G — S contains at least r internally disjoint u — v paths of
length dg(u,v). Thus a graph is (k, £, D)-stable if and only if it is (k,£, D, 1)-
stable. The next result shows however that ( k, £, D, r)-stable graphs have already
been studied.

Proposition 4. Let k, £ and v be integers withk + £ > 1 andr > 1 and let
D C N—{1}. ThenG is(k,2, D,r)-stable if and only if it is(k+ v —1,£,D)-
stable.

The proof is omitted since it is a simple generalization of the last part of the
proof in Proposition 1.
Remark: By applying techniques similar to those employed in the proofs of Propo-
sitions 1,2, 3 and 4, analogues of these results can be obtained for directed graphs.

2. Planar distance stable graphs.

In this section we study planar ( k, £, D)-stable graphs. If ¢ # D C N — {1} and
m is the smallest element of D, then it follows from Proposition 3 that a graph G
is (k,£, D)-stable if and only if G is ( k, £, {m})-stable. Thus when these graphs
are studied it suffices to consider pairs of vertices distance m apart. We focus our
attention on the diameter of planar (k, 0, {m})-stable graphs and relationships
between k and m for these graphs.

Consider first planar 1-vertex distance stable graphs. Observe that C, is a planar
1-vertex distance stable graph with diameter 2. Letd > 3 and let Hy, Hz,...,
Hg_3 be d — 2 copies of K4 with V(H;) = {ui,v;, T, w;}. Let G4 be obtained
from Hi, Ha,... ,Hq4_2 by identifying for 1 < 1 < d — 2 the vertices z; and
w; with u;41 and v, respectively, and then joining a new vertex u to u; and
v, and another vertex v t0 242 and wqy_2. Figure 2 shows G's. Note that G4 is
a planar 1-vertex distance stable graph having diameter d; so in particular, Gy is
(1,0,{m})-stable, for2 < m < d.
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Figure 2

The next result shows that if k& > 2, then the diameter of a k-vertex distance
stable graph cannot be too large.

Proposition 5. IfG is a k-vertex distance stable graph where k > 2, then diam
G<L2.

Proof: Suppose diam G > 3. Then G contains a pair of vertices u, w such that
de(u, w) = 3. Let v be a vertex that precedes w on a shortest u — w path. Then
de(u,v) = 2. Since G is k-vertex distance stable, there existatleast k+ 1 > 3
internally disjoint 4 — v paths of length 2. Let z,y and z be three vertices in
N(u) N N(v). We may assume that y and w lie on opposite sides of the cycle u,
z, v, 2, u in a plane embedding of G, otherwise w and z lie on opposite sides of
the cycle u, y, v, z, y or w and z lie on opposite sides of the cycle u, z, v, y, u.
Since dg(y, w) = 2 there exists at least one y — w path of length 2 different from
y, v, w, that contains either z or 2. But then z or z is adjacent with w, which is
not possible since dg(u, w) = 3. Sodiam G < 2. | |

Figure 3 shows k-vertex distance stable graphs for k = 2, 3, respectively.

> >

A 2-vertex distance A 3-vertex distance stable
stable graph ) graph
Figure 3

Since a planar graph G has §(G) < S, it follows that if G is a planar k-vertex
distance stable graph, then k + 1 < 8§(G) < 5, thatis, k < 4. We show next
that there is no planar 4-vertex distance stable graph. If G is a planar 4-vertex
distance stable graph, then there exists a pair u, v of nonadjacent vertices such that
|IN(u) NN(v)] > 5. Letvy,va,... ,vs be vertices in N(u) NN (v) and assume
that this is the order in which they appear in a plane embedding of G as we proceed
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Figure 4

in counter-clockwise order about v. Then the plane embedding of G contains the

plane subgraph of Figure 4. Clearly dg(v1,v4) = 2, but [N(v1) N N(vs)| < 3.
'We have thus shown that there exist planar k-vertex distance stable graphs if and

only if k = 1,2 or 3. Next we consider (k,0, {m})-stable graphs for m > 3.

Proposition 6. Letm > 3 be an integer. Then there exists a planar (k,0, {m}) -
stable graph if1 < k<2m—3 orifm=3 andk=2m - 2.

Proof: If m = 3 and k = 2m — 2, then the icosahedron shown in Figure 5 is
(k,0,{m})-stable.

Figure 5

Suppose now thatm > 3 and1 < k < 2m — 3. We show that there is a
(k,0,{m})-stable graph by first constructing a (2m — 3,0, {m})-stable graph.

Forj = 0,1,...,2m — 3 let H; be the path u,v;1,v2,... ,Vjm-1,v. We
now construct a graph G2 m—3,m from Ho, Hy, ... , Hapa_3 by first identifying the
vertex u from each H; in a vertex labelled u and identifying the vertex v from
each Hj; in a vertex labelled v. Next add forevery i (1 < ¢ < m — 1) the
edges of {vg;ve1: | 0 < £ < 2m — 3 and where £ + 1 is expressed modulo
2m — 2}. Finally add the edges of {vjvj+1,4+1,vj3j-1,4+1 | where j is even
and 0 < j < 2m — 3 and the subscripts j + 1 and j — 1 are expressed modulo
2m —2 andiis odd with 1 < 1 < m — 2} U{v;js1,441, Vj5vj-1,4+1 Where j is
oddand1 < j < 2m -3 andj+ 1andj— 1 are expressed modulo 2m — 2
andiisevenand2 < i < m — 2} to produce Gapm—3 m. It can be shown that
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G2m-3,m is a planar (2m — 3,0, {m})-stable graph. Suppose now that k is a
positive integer with k = (2m — 3) — r for some positive integer 7. Let Gy, m be
obtained from G2y,-3 m by identifying for each i (1 < 4 < m — 1) the vertices

of the set {vam-34,¥2m-4,,+++ , V2m-3—r;} in a vertex labelled vam-3-r;. By
observing that the eccentricity of every vertex other than u or v is at most m — 1
we see that G, is a planar (k,0, {m})-stable graph. ]

Figure 6 shows G5 4 and G2 4.

Figure 6

The next results shows that if G is a planar (k,0, {m}) -stable graph with diam
G > m, then k cannot be too large in comparison to m.

Proposition 7. Letm > 3 be aninteger andG aplanar(k,0,{m}) -stable graph
withdiamG > m. Thenl < k<2m -2 ifm=3 and1 < k<2m -3 for
m>4.

Proof: Let G be a planar (k,0, {m})-stable graph with diam G > m > 3. Let
, v be a pair of vertices with dg(u,v) = m. Then there exist at least k + 1
internally disjoint u — v paths in G. Let H;: u,v;1,v2,... ,Vim_19,0 <1 < k
be k+ 1 internally disjoint u — v paths in G. Consider a plane embedding of G and
suppose that the paths Ho, Hy,... , Hi have been labelled in the order in which
they emanate from u as we proceed about u in the clockwise direction. Observe
that dg(vi1,Vjm-1) < mfor0 < 1,7 < k. Ifde(vi1,vjm-1) = m, then G
contains at least k + 1 internally disjoint v;;; — vjm—1 paths.

We show first that k < 2m — 2. If k < 2m — 1, then there exist at least 2m
internally disjoint u — v paths. Consider the vertex vy 1. If dg(v1,1,vjm-1) = m,
for some j > 3, then there exist at least 2 m interally disjoint v1,1 — vj,m—1 paths
in G. Hence each of these paths must contain one and only one of the 2 m vertices
©,V0,1,V02,+-+ ,V0,m=1,Y, V2,m—1,Y2,m=2,.-. ,V2,1. Further, one of these paths
must contain v 4,—; and another one vo m-1. Since dg(vi,1,v0,m-1) 2 m —2
anddg(vy,1,v2 m-1) > m—2,itfollowsthatj = 3 or4andj = k or k—1. Since
m>3,k—1>2m—2 >4.S0j =4 andm = 3. Observe thatin this case there
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cannot exist 2m internally disjoint vy ;-1 — v;,1 paths. Thus dg(vim-1,vj1) <
m — 1= 2. However, it is not difficult to see that dg(v; ;-1,v4,1) > 2. So this
situation cannot occur. Therefore dg(vi,1,Vjm-1) < m—1for3 <7< 2m
—1= 5. However, once again it can be shown that dg(v1 1, Vm+1 m—-1) > m—1.
Hencek <2m-2.

We show next that if m > 4,then k < 2m — 2. Suppose k = 2m — 2.
Then there exist 2m — 1 internally disjoint « — v paths in G. Consider the
vertex vy,1. If dg(v1,1,Vjm—1) = m for some j > 3, then there exists a col-
lection C of at least 2m — 1 internally disjoint v1; — vjm-1 paths of length m
and each of these paths must contain at least one of the 2 m vertices on the cycle
C:u,v0,1,Y02,.++ ,Y0,m=1,Y,Y2 m-1,V2,m-2,... ,¥2,1. Further, at most one of
these paths contains two vertices of C. Suppose now that C contains two distinct
paths R and S such that R contains v3 ,,—; and S contains vp g,—1. If neither the
¥2,m-1 — Vjm—1 path of R nor the vg,m—1 — vjm-1 path of S contains v, then
3<j<4and2m -3 < j < 2m - 2. However, this is impossible, since
m > 4. Clearly C contains either a v; 1 — v;,,—1 path that contains v ,,_; and
no other vertex of C or a v;) — v;,-) path that contains vp ,,_; and no other
vertex of C. Suppose the former occurs and let P be such a vi;) — vjm—1 path.
(The argument for the second case is similar.) Then necessarily another one of
the paths of C contains vo ,,—2 but no other vertex of the cycle C, otherwise, as
before, a contradiction is produced. Soj =3 or4andj=2m —2,2m -3 or
2m —4. Since m > 4, this implies j =4 andm =4 andthatk =2m —-2=6.
S0 1,102 is an edge and the v;; — v4 3 path P contains a vy; — v2 3 path P’
of length 2, say v1,1,z,v2 3. (See Figure 7.) Notice that v1,1,v0.2,v0,3,v,v23
and P’ forms a cycle of length 6 that contains v; 3 in its interior region. Since
k = 6, it now follows that dg(v13v;,) < 4 forj = 2,3,4,5 and 6. In par-
ticular dg(vy 3,va,1) < 3. Itis not difficult to see that dg(vy 3,v4,1) > 3. So
dg(viz,va; 1) = 3. Since z # vz 2, it follows that vy 3v2 2 € E(G). Therefore
the only path of length 3 from vi3 0vs is v13,Y23,V32,V4,1.

Observe that u,v1,1,Z,v23,V32,v4,1, 8 iS a 6-cycle that contains v3; in its
interior. So d(v3,1,v;3) < 3 for0 < j < 6. In particular d(v3 ;1,v63) < 3.
However, d(v3,1,v63) > 3. Sod(v31,v63) = 3. Since v32,vs; € E(G),
it follows that the only path of length 3 from v3 ; 10 v63 iS v3,1,v4,1,952,V63.
However, now v, ve3,vs2,v4,1,v3,2v2 3, v is a 6-cycle that contains vs 3 in its
interior. This is impossible, since there are seven internally disjoint v; 3 — va3
paths. This shows that dg(vi1,Vjm-1) <m—1forallj (0 <7< 2m—2).
Similarly dg(v;,1,v5m-1) < m—1foralliand;j (0 <4, j <2m-2).

Suppose Q is some vy,; — vy m—1-path. If v;j, vis1 jo1 (OFvi 3, vi1 j—1) isapath
of Q as we proceed from vy,1 O v;;m—1, then this path will be called an upward
diagonal move to the right (or left) (where1 < j <m-2and0 <i<2m—-2
and i+ 1 is expressed modulo 2 m — 1). If Q contains a path of the type v; j, vi+1 5
(or v; j,v;1 5), as we proceed from v, 10 v, m-1, then such a path will be called

218



Figure 7
a horizontal move to the right (left).

From the case we are considering it follows that dg(vi,1 , Vit(m-1)m-1) < M —
1forall0 < i < 2m—2 and whereit(m—1) is expressed modulo 2m—2. (We
assume henceforth that all first subscripts are expressed modulo 2m — 2.) From
the planar embedding of G we are considering it follows that de(vi) = Vig(m-1)) 2
m— 1. Sodg(viy, Viz(m-1)m-1) = m— 1. IfQ i a vi1 — Vie(m—1),m—1 Path (o
i1 — Vi—(m-1),m—1 Path) of length m — 1, then observe that Q contains m — 2
upward diagonal moves to the right (left) and one horizontal move to the right
(left).

We show first that the horizontal move in a v;; — Vi+m—1,m-1 Path Q, of length
m — 1, is either v;),vis1,1 OF Yirm-2,m—1, Vi+m—1,m-1- If this is not the case,
then the horizontal move is of the type vj¢, vjs1 for some j (i < j < i+m-—
2). SO Vism—2,m—2,Vitm—1,m—1 i an upward diagonal move to the right in Q.
This forces the horizontal move to the left in @ vj+2mm-3,1 — Vi+—m-2,m-1 Path
of length m — 1 10 be Viem—1,m—1, Viem-2,m-1. Therefore virmm-2 » Vism—1,m=1
is an upward diagonal move to the left in every vi.2m-3,1 — Viem—-2,m-1 path of
length m — 1. If we now consider a vi+1,1 — Yiem,m-1 Path Q2 of lengthm — 1,
it can be seen that the horizontal move to the right in Q2 iS Vi+m-1,m—15 Vi+mm-1-
SO vi+1,1, Vi+2 2 is an upward diagonal move to the right in Q2. This forces the
horizontal move to the left in @ v;42.1 — Vi—m+3,m-1 Path Q3 of lengthm — 1 to
be vie2.1, Yis1,1- SO V41,1, ¥52 SN upward diagonal move to the left in Q3. This
is not possible since v;1, vj+1,2 is an upward diagonal move to the right in Q3.

Therefore the horizontal move to the right in a v;; — vi+m—1,1 path of length
m — 1 is either v;1,vi+1,1 OF Viem-2,m—1, Vitm=1,m—1- Similarly the horizontal
move to the leftina v; | — vi_m+1,m—1 pathoflength m—1 inG iseither v 1, vi—1,1
OF ¥i_m+2,m~1, Yi—m+1,m—1. Theaboveargument also implies that foreveryi (0 <
i < 2m — 2) notboth v; 1, vis12 and vyi1,1, Vie2 2 A€ edges of G. Similarly not
bOth v 2, Vi+1,m—1 ANA Vis1,m-2, Vi+2,m—1 are edges of G.
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Consider a v;) — Vi+m-1,m-1 path Q of length m — 1. We assume that the
horizontal move to the right in Q is of the type SO vy pm_2 m=1s Vism—1,m=1. SO
v3,1,v4+1,2 iS an upward diagonal move to the right in Q. This implies that v;,y 4
vi+2,2 is not an edge of G. So the horizontal move in a vi41,1 —Yi4mm-1 path of
lengthm — 1 in G is v;41,1, vis2,1 Which forces the edge Vi+2 1, Vi+3 2 to belong to
G. Continuing in this manner we see that vis2¢,1, vi+24+1,2 is an edge for0 < £ <
m — 1. But vy 2(m-1y,1 = vi-1,1. Soboth v;_; v;2 and v;; v;.1 2 are edges of G
which we have already observed is not possible. Similarly we can show that if a
Yi,1 —Vi+m—1,m—1 Path of length m — 1 contains a horizontal move of the type v;;,
Vi+1,1, then both v;_2 ;2 Vi1 m—1 and v;_y m—2 V;m-1 are edges of G which is
impossible. Therefore k < 2m — 3. |

To summarize the results of this section we have shown that if G is a planar
(k,0,{m})-stable graph with diam G > m, thenk < 2m — 1 form = 2,
k<2m-2form=3and k <2m — 3 form > 4 and these bounds for k are
best possible.
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