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Abstract. Let § and T be sets with |S| = m and |T| = n. Let §3,5,,T3,T% be the
set of all 3-subsets (2-subsets) of S and T" respectively. Define Q((m,2,3),(n,2,3))
as the smallest subset of S x T needed to cover all elements of §3 x T3. A more
general version of this problem is initially defined, but the bulk of the investigation is
devoted to studying this number. Its property as a lower bound for a planar crossing
number is the reason for this focus.

1. Introduction.

We propose a generalization of Tur4n’s problem on the Cartesian products (in
the set theoretic sense) of hypergraphs. We prove an elementary bound, and then
make some further observations. We conclude by showing a connection of this
problem to the determination of certain planar crossing numbers.

Even in relatively simple cases we obtain constructions and results which have
no direct analogue in the theory of Turdn numbers. Thus, the investigation has a
certain intrinsic interest, apart from possible applications.

Let n,l, and k be natural numbers with n > [ > k. Define the function
T(n, k, 1) as the minimum number of k-subsets of a set of size n needed to ensure
every l-subset contains at least one of the k-subsets. This is the Turdn number
T(n, k, ). Turdn settled the case k = 2 (see [2] Chap. VI), but the general prob-
lem remains an intriguing open question (cf. [4]). We now present the following
generalization.
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Let (n;, ki, L), 1= 1,..., m, be m triples of natural numbers. Let S; be a set
where |S;| = n; and let S = P(S;) X P(S2) % ... x P(Sp). WesayC is a
(m;, ki, L)E, cover if:

mccs;

(2) whenever z = (z;), € C,then|z;| = k;; and

(3) forany y = ()™ € S where |y;| = I;, there exists an z = (z;)7; inC
with z; C y;, foralli.

Now define Q((m;, ki, ;)% ) to be the minimum |C| as C ranges over all (n;, k;, I;)
covers. If n;, k;, and [; are independent of 1, this will be referred toas Q(n, m, k, 1).
Please note that the case k; = 1,1 = 1 to m, is equivalent to the problem of
Zarankiewicz ([2] Chap. VIL.2).

The determination of Q(n, m, k, I} appears to be even more difficult than T'(n, L, k) .
This paper is largely devoted to a study of Q(n,2,2,3).

Note: When the parameters are understood, we will sometimes speak of C as
covering S, or even covering S1 X ... X Sp. This should cause no confusion.

We remark that other problems on the Cartesian product of hypergraphs have
been studied, for example the chromatic number in [1].

2. Simple bounds.

The following proposition gives simple bounds on Q. Sym(m) denotes the sym-
metric group on m elements.

Proposition 1. Let {(n;, k;, )} 2, be given. Then:
uensrmm)[ﬁ(o(l))I'ﬁ(a(2))f-.-[ﬁ(a(m- D) T(natm), katmy, loem) 111 - -1

< QUm, ki, 1)) < [T Cm, ki 1)
i=1

where () = () [/ (£),5 = 1...m.

Proof; The upper bound is obvious. For the lower bound, first set o = 1. Now
fix an [, -subset A of S, using the notation of the previous section, and let C be an
(m, ki, ;)2 cover of S. Let:

Ca= {z= (z)2 €C:x1 C A}.

Then clearly [C4| > Q((m, ki, k)Z;). Now C = |J,c5Ca, and any k-subset of
Sy is contained in precisely (7 Z5') subsets of Sy. Thus,

(m—k -1 m—k\ " (m m
|CI = (ll _ kl) Z ICAI 2 (ll _ kl) (ll )Q((ﬂi,ki,li)iﬂ)

ACG
= P()Q((m, ki, 1)) -
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By integrality, |C| > [ﬁ( 1)Q((m, ki, li),-':z)] . Proceeding in this fashion and
observing that Q(nm, km, lm) = T(1im, km, lm) , we obtain:

icl > [13(1) [ [ﬁ(m— 1)T(n,,,,k,,,,z,,,)n ] _

This argument is clearly independent of the order in which the indices are sup-
pressed and C. Hence, taking the maximum over all ¢ in Sym(m) and the min
over all covers C gives the bound. |

Corollary 2. (3)/()™ "' T(n,k,1) < Q(n,m,k,1) = T(n,k,H™.

Corollary 3. Letg(n) = Q(n,2,2,3). Then: [X2=1 [H22 ] < g(n) <
[
Proof: The only additional piece of information needed is that T'(=n, 2, 3)
= [%==2L]. For this, see [2]. 1

3. Observations on Q(n,2,2,3).

For the remainder of the paper let g(n) = Q(n,2,2,3). This is the simplest,
non-trivial case to consider after Zarankiewicz’s problem; in the next section it
will be shown to have a connection with planar crossing numbers.

First, we observe that Corollary 3 yields the following bounds:

4 < q(4) < 4,14 < g(5) < 16,30 < ¢(6) < 36,63 < ¢(7) < 81,and
112 < ¢(8) < 144 .

Thus, g(4) = 4. The next sequence of propositions gives the exact values for
these small n..
Proposition 4. ¢(5) = 14
Proof: Let S = {1,2,3,4,5}and T = {1',2,3',4',5'}, then the 14 pairs of
doubletons in Table I show that g(5) < 14 and hence by Corollary 3 ¢(5) = 14.
|
Table I

({1,.21,{1",2"H ({1,2}1,{5.3'h ({1,5},{5".4'h ({2,5}{3".4'D
({1,4},{2",4'h ({2,4},{1,4'D ({1,3},{3".4'D) ({2,3},{4,5'D
({4,5},{2',5'h ({3,4},{1.5'D ({3,4},{2".3'h ({3,5},{3",5'D
({3,5},{2,4'h ({4,51.{1,3'D

Proposition 5. ¢(6) = 32
Proof: LetS = {1,2,3,4,5,6}andT = {1',2/,3',4/,5',6'}, then the 32 pairs
of doubletons in Table II show that g(6) < 32. ]
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Table II

({1,2},{1,2'p ({1,2},{4',5'h ({1,3},{1,3'}) ({1,3},{5".6'h
({2,3},{2',3'h) ({2,3},{4,6'h ({2,4},{3",5'}) ({2,4}.{V",6'D
({1,4},{3.4'h ({1,4},{2',6'}) ({3,4},{1',4'D) ({3,4},{2",5'D
({3,5},{1",.2'p ({3,5},{4",5'D) ({1,5},{4,6'h ({1,5},{2,3'})
({2,5},{1,3'h ({2,5},{5",6'h ({4,5},{1".5'Dh ({4,5},{2",4')
({4,5},{3",6'D) ({1,6},{3",6')) ({1,6},{2',4'h) ({1,6},{1',5'})
({2,6},{2',5') ({2,6},{V,4'h) ({4,6},{4",6'}) ({4,6},{2,3'D)
({3,6}1,{v',6'h) ({3,6},{3",5'h ({5.6},{2",6'D) ({5,6},{3".4'D

To show that g(6) > 32 we require the following lemma:
Lemma 6.

@ Q((4,2,3),(5,2,3))
(b) Q((4,2,3),(6,2,3))
© Q((5,2,3),(6,2,3))

Proof: (a) and (b) follow from Proposition 1. To prove (c), let |S1| =5 and
|S2] = 6,and letC be a ((5,2,3),(6,2,3)) cover of size 20. Proceeding as in
Proposition 1, this requires every triangle in S, to be covered exactly four times
by C. Let z be the number of times {1’,2'} appears as the second component in
C (here

S = {1',2',3',4',5',6'}. Now C acts as a ((5,2,3),(4,2,3)) cover on
S1 x {3,4,5,6}. By part (a) of the lemma and the fact every triangle of S,
is covered four times by C, we see C restricted to S; x {3,4,5,6} has size 8.
The four triangles containing {1’,2'} contribute 16 — 3z more elements to C, so
IC| = 24 -3 z. Butas z is integral |C| # 20. Hence, |C| > 21. Now observing that
the ((6,2,3),(6,2,3)) cover given previously acts as a ((5,2,3),(6,2,3))
cover of size 21 when restricted to {1,2,3,4,5} x S, proves the lemma. |

We now return to the proof of Proposition 15. LetC be a ((6,2, 3),(6,2,3))
cover; let S; and S, be the respective sets of size 6; and suppose |C] < 32. Let
z be the number of times {1, 2} appears as the first component of C. Now C acts
asa((4,2,3),(6,2,3)) coveron {3,4,5,6} x S,. Hence the triangle from
{3,4,5,6} contributes at least 12 elements to C (Lemma 5,(b)). The triangles
containing {1',2'} contribute at least 24 — 3z more elements, hence, |C| >
36 — 3z. Thus z > 2. By identical reasoning, every edge of S appears at least
twice as the first component in C.

Now C acts as ((5,2,3),(6,2,3)) coveron {1,2,3,4,5} x Sy, and hence
has size at least 21 after restriction (Lemma 6, (c)). Thus, at least one edge of

8
12
21.
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{1,2,3,4,5} occurs at least three times as a first component in C. Let this edge
be (12). Now C alsoactsas a((5,2,3),(6,2,3)) coveron{2,3,4,5,6}xS,.
Thus, one edge of {2,3,4,5,6} must occur at least three times in C. But now
two edges in Sy contribute at least three times to C, while all other edges contribute
at least twice to C. Hence, [C| > 32,and g(6) = 32. 1

Proposition 7. ¢(7) = 63 and ¢(8) = 112.

Proof: We first show that¢(8) = 112. LetS = {1,2,3,...,8},T = {1',2/,3/,
..., 8'} and let B be a Steiner quadruple system of order 8 on S. Define C by

€ = {({e,b},{c,d'}:{a,b,c,d} € B} J{({a,b},{c",}'D:0a,b € S}.

Recall that in a Steiner quadruple system of order 8 every pair P = {a,b} is in
exactly three quadruples, say By, Bz, Bs, and that the pairs P, B, — P, B, - P,
B3 — P, are a partition of S. Thus |C| = 112 as desired. Moreover, given any
triple {z, y, 2z} C S itis easy to see that the graph on T induced by the set of pairs
{¢,d'} such that ({a,b},{c,d'}) € C and a,d € {z,y, z} is a disjoint union of
two K4's. Thus every pair of triples one from S and ore from T" must contain
one of the pairs of doubletons in C. Whence ¢g(8) < 112 and so ¢(8) = 112 by
Corollary 3.

To show ¢(7) = 63 take C’ to be the 63 pairs of doubletons in C that do not
contain 8 or 8'. ]

The result for g(6) seems anomalous because of its failure to meet the lower
bound specified by Corollary 2. The next proposition shows that it is really 5, 7,
and 8 that are the exceptional cases.

Proposition 8. Letn>9. Then

o(n) > [Mn; 1) |'1u(n4— 2) H

Proof: Recall that Corollary 3 is derived by observing that (7) [%%2.] < g(n)-
{n—2). It follows from the proof of Corollary 3 that every triangle in S; contains
an edge associated with at least + [%22.] edges in any minimal cover. Now if
n>9,: L[H22] 5 2 Soatleast one triangle in S, is covered twice by an
edge in Sy which occurs at least  [%%2] times in the minimal cover. Let z be
the number of edges in S; with this property.

Now “reverse the orientation” to establish the lower bound. Each triangle in
S must be covered at least [%%-2] times. However, every triangle covered
twice by the same edge must be covered at least [%X%2-] + 1 times. Hence:
(3) [%%2]+z < g(n)(n—2) Sinceevery triangle in S; contributes at least one
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edge with the above property, z > [%%-2]. Thus: Kol [ ] 4 f(‘:j)"l <

q(n) and 5o g(n) > [He=lk [4==2 1] foralln > 9 (]

We now discuss an asymptotic lower boundon Q(m, n) =Q((m, 2, 3),(n,2,3)).
An easy counting argument, left to the reader, shows that the ratio Q(m, n) /(3) (3)
is monotone non-decreasing in each of the arguments m and n. Thus, since g(n) =
Q(n, n) the limit

. q(n)
g= lim -7
= (3)
exists; further the bounds in Corollary 3 imply that 1/6 < ¢ < 1/4. (Itis

appealing to think of ¢ as the “asymptotic proportion” of “2 x2” sets needed to
cover all “3x3” sets.)

Theorem 9. ¢ > 25%5 ~0.1910 > L ~0.1667.

Before proceeding with the proof, we need some notation and a lemma. Let X
and Y be disjoint n-element sets and let C be a fixed system of (2 x2)-sets p1 Xp2
(® C X,|m| = 2,92 CY,|pz2| = 2) that cover all the (3 x 3)-sets. Each pair
p in X then has an associated graph Gy(p) = {§ C Y:px g € C}: symmet-
rically each p in Y has an associated graph Gx(p). Note |C| = 3", |Gy (p)|
=Y v |Gx(p)|. If T is any 3-element subset of X, then -

"(_"—_2)_] )

U Gr(n y

>T(n3,2) = [
pe(3)

since the graph Gy(T) = Ure(D Gy(p) has the property that every 3-element
subset of Y contains an edge of Gy (T).

Lemma 10 (Refinement of Boole’s inequality). Let By, B;, ..., By, be any
sequence of finite sets. Then

m
2
|31U32U...UB,,.|$§:|B£|—Z' > |1BinBji @
il 1<i<ji<m

where A = max;[deg(z) = |{i: = € B;}|] is the maximum degree of points.

Proof: Note that, putting V = By UB3 U...U Bp,

0 <) (deg(z) — 1)(A — deg(z)) 3)

zeV
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because each term of this sum is non-negative. Expanding and using the identities

m

Y deg(z) =) |Bi| @

z€eV i=1

d
E(egz(x))= Y, 1B:nB ©

zeV 1<i<j<m

one easily obtains (2). |

We apply this lemma in the case m = 3 only. If the triplet T contains the pairs
P1, P2, P3, then Lemma 10 applied to (1) gives

[n(ﬂ—Z)

3
2
y ] < Zl: |Gy (p)| - giEq |Gy (p:) UGy (p))| ©

Summing (6) over all triplests T C X, we get

n\ [#(n—2) 2 2
(3)[ 2 ]SEElGY(p.-)I—g%jzlay(pi)ncy(p;)l @

T i=l i<j
2
=(-2 Y IGrdI-5 2 2 (degw;c(q),v))
re(2) se(¥)vex @®

where deg(Gx(g), v) is the degree of vertex v in the graph Gx(q). (To see the
equality of the last terms of (7) and (8), observe that both sums count the total
number of unorderd pairs of incident edges, scanning over all graphs Gx(q).)
Now by Jensen’s inequality on convex functions,

deg(Gx(g),v) 15 ex deg(Gx(q),v)
3 A L G )

veX

_ n(2 |Gx(f1)|/") ®
- 2

= |Gx(9)| (2|Gx(g)|/n-1)
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and hence

E E(deg(Gx(q) ”)) > E IGx(9)] 2IGx(9)|/n—1)

e€(7)vex 46(")

== E IGx (D> - Y, 1Gx(9)|
" e ®) 06(;{) (10)
(;‘) [E lGx(q)l] N 0]

ae(¥) e€(3)
- n,(n“_ Sl = el
Substituting (10) into (8) gives
()22 ] < (n-0el - gyt + 3 .

4 8 s
- (“" E) €l - sz "
We may assume that |C| = g(n) = ¢, (;‘)2 with m ¢a = ¢. Hence dividing both
sides of (11) by n(2)* and letting n tend to infinity, we get

3 1
2_—- —
q 2q+4s0

e}

The crossing number v(G) of a graph G is the minimum number of crossings
(of its edges) among the drawings of G in the plane. The connection between
v(Kmy) and and the preceding theory is given by:

Proposition 11. Forallm,n > 3: Q((m,2,3),(n,2,3)) < (Kmnn)
<T(m,2,3) -T(n,2,3).

Proof: The upper bound on v( K, ,) was first established by Zarankiewicz [6]
who erroneously thought he had proved equality. For the lower bound let f: G —

and so

w
-}

N =

q2

N
H

which proves Theorem 9.

4. Crossing numbers.
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%2 be some planar embedding of G. Now it is well known that »(3,3) = 1.

Hence, given any triples {a,b,c} C S and {d,e, f} C T, there must exist at

least one pair of doubletons (say {a, b}, {d, e}) which generate a cross in f(G).

If each cross in f(G) is identified with the pair of doubletons from S and T which

generate it, we see each pair of triples must be covered by at least one such pair

of doubletons. Thus, Q((m,2,3,),(n,2,3)) < v(Kmpn). [ |
As an application, we have easily:

Corollary 12. Foralln> 3,v(4,n) = 2-[%&2]

Proof: From Proposition 1, Q((4,2,3),(n,2,3)) = T(4,2,3) -T(n,2,3)

=2 . [H2], i
The best general result on the crossing numbers of complete bipartite graphs is

the following due to Kleitman [5].
Forl < min{m,n} <6,

vt = 71|75 51|75

The smallest complete bipartite graph whose crossing number is unknown is
K473.In[5] itis shown that v( K7 ) € {77,79,81}.

A similar connection between v( K,,) and T'(n, 5,4), due to Ringel is discussed
in [3].

Acknowledgements.
The first author was supported by NSERC grant U0463.

References

1. C. Berge and M. Simonovits, The coloring numbers of the direct product of
two hypergraphs, Springer Lecture Notes #411 (1974), 21-33.

2. B. Bollob4s, “Extremal Graph Theory”, Academic Press, 1978.

3. D. deCaen, D.L. Kreher, and J. Wiseman, On constructive upper bounds for
the Turdn numbers T(n, 27 + 1,27), Congressus Numerantium 65 (1988),
277-280.

4, P. Frankl and V. R6dl, Lower bounds for Turdn numbers, Graphs and Com-
binatorics 1 (1985), 213-216.

S. D. Kleitman, The crossing number Ks », J. Combinatorial Theory 9 (1970
315-323).

6. K. Zarankiewicz, On a problem of P. Turdn concerning graphs, Fund. Math.
41 (1954), 137-145.

25



