On the Existence of Simple and Indecomposable Block Designs with Block Size 4

Shen Hao

Department of Applied Mathematics Shanghai Jiao Tong University Shanghai 200030 PEOPLE'S REPUBLIC OF CHINA

Abstract. It is proved in this paper that for $\lambda=4$ and 5, the necessary conditions for the existence of a simple $B(4,\lambda;v)$ are also sufficient. It is also proved that for $\lambda=4$ and 5, the necessary conditions for the existence of an indecomposable simple $B(4,\lambda;v)$ are also sufficient, with the unique exception $(v,\lambda)=(7,4)$ and 10 possible exceptions.

1. Introduction.

A balanced incomplete block design $B(k, \lambda; v)$ is an ordered pair (V, B) where V is a finite set containing v points, and B is a collection of k-subsets (called blocks) of V such that each pair of distinct points of V is contained in exactly λ blocks. A $B(k, \lambda; v)$ is called simple and denoted $NB(k, \lambda; v)$ if it contains no repeated blocks.

Let (V, \mathcal{B}) be a $B(k, \lambda; v)$, if there exist $\mathcal{B}_1 \subset \mathcal{B}$ and $1 \leq \lambda_1 < \lambda$ such that (V, \mathcal{B}_1) is a $B(k, \lambda_1; v)$ then (V, \mathcal{B}) is called decomposable. Otherwise it is called indecomposable.

It is not difficult to verify that the following conditions are necessary for the existence of an $NB(k, \lambda; v)$ or an indecomposable $NB(k, \lambda; v)$:

$$\lambda(\nu-1) \equiv 0 \pmod{(k-1)},$$

$$\lambda\nu(\nu-1) \equiv 0 \pmod{(k(k-1))},$$

$$\lambda \leq {\nu-2 \choose k-2}.$$
(1)

For given k and λ , any positive integer v satisfying (1) is called admissible. A B(k, 1; v) is also known as a Steiner system. Obviously any Steiner system is both simple and indecomposable.

For given k and $\lambda \geq 2$, the existence of $NB(k,\lambda;v)$'s has been studied by several authors. It was proved that there exists an NB(3,2;v) if and only if $v \equiv 0$ or $1 \pmod{3}$, $v \geq 4$ [1] and there exists an NB(3,3;v) if and only if $v \equiv 1 \pmod{2}$, $v \geq 5$ [2]. The existence of simple triple systems for arbitrary λ was completely determined in [4]: there exists an $NB(3,\lambda;v)$ for every admissible v.

Much less is known concerning the existence of indecomposable $NB(k, \lambda; v)$'s. To the author's knowledge, the problem is completely solved only in the following cases:

(1) [7] There exists an indecomposable NB(3,2; v) if and only if

$$v \equiv 0 \text{ or } 1 \pmod{3}, v > 3 \text{ and } v \neq 7;$$

there exists an indecomposable NB(3,3; v) if and only if

$$v \equiv 1 \pmod{2}, \quad v \geq 5.$$

(2) [3] There exists an indecomposable NB(3,4;v) if and only if

$$v \equiv 0 \text{ or } 1 \pmod{3}, \quad v \geq 10.$$

(3) [8] There exists an indecomposable NB(4, 2; v) if and only if

$$v \equiv 1 \pmod{3}, \quad v > 7.$$

(4) [6] There exists an indecomposable NB(4,3; v) if and only if

$$v \equiv 0 \text{ or } 1 \pmod{4}, \quad v \geq 5.$$

In this paper we will discuss the existence of $NB(4,\lambda;v)$ and indecomposable $NB(4,\lambda;v)$, and give a complete solution to the existence of NB(4,4;v) and NB(4,5;v). Further, we will also give an almost complete solution to the existence of indecomposable NB(4,4;v) and indecomposable NB(4,5;v).

2. Simple designs containing a given subdesign.

A pairwise balanced design $B(K, \lambda; v)$ is an ordered pair (V, A) where V is a v-set and A is a collection of subsets (called blocks) of V such that $|B| \in K$ for each block $B \in A$, and each pair of distinct points of V is contained in exactly λ blocks. If $K = \{k\}$, then a $B(\{k\}, \lambda; v)$ is in fact a $B(k, \lambda; v)$.

Let (V, A) be a $B(K, \lambda; v)$. Let $V_1 \subset V$, $|V_1| = v_1$, $A_1 \subset A$. If (V, A_1) is a $B(K, \lambda; v_1)$ then it is called a subdesign of (V, A), or it is embedded in (V, A).

The following lemma will be used frequently in this paper and the proof is obvious:

Lemma 1. Let (V, A) be a $B(k, \lambda; v)$ and (V_1, A_1) be a subdesign of (V, A). If (V_1, A_1) is indecomposable, then (V, A) is also indecomposable.

We will also need the concept of incomplete pairwise balanced designs. An incomplete pairwise balanced design $(v, w; K, \lambda)$ -IPBD is an ordered triple (X, Y, A) where X is a v-set, Y is a w-subset of X and A is a collection of subsets (called blocks) of X such that $|B| \in K$ and $|B \cap Y| \le 1$ for each $B \in A$, and each pair of distinct points of X, not both in Y, is contained in exactly λ blocks.

Lemma 2. Let (X, Y, A) be a $(v, w; \{k\}; \lambda)$ -IPBD and let

$$A_0 = \{B \in A \mid |B \cap Y| = 0\}, \quad A_1 = \{B \in A \mid |B \cap Y| = 1\}.$$

Then

$$|A_0| = \lambda(v-w)\{v-(k-1)w-1\}/k(k-1), |A_1| = \lambda w(v-w)/(k-1).$$
 (2)

Proof: For any $y \in Y$ and $x \in X \setminus Y$, $\{x, y\}$ is contained in exactly λ blocks. So for any $y \in Y$, y is contained in precisely $\lambda(v-w)/(k-1)$ blocks. As |Y| = w, we have $|A_1| = \lambda w(v-w)/(k-1)$. Obviously,

$$|\mathcal{A}| = \lambda \left\{ \binom{v}{2} - \binom{w}{2} \right\} / \binom{k}{2},$$

thus, we have

$$|A_0| = |A| - |A_1| = \lambda(v - w) \cdot \{v - (k - 1)w - 1\}/k(k - 1).$$

Theorem 1. If there exists a simple $(v, w; \{k\}, \lambda_1)$ -IPBD, a simple $(v, w; \{k\}, \lambda_2)$ -IPBD and $\lambda_1 \lambda_2 (k-2)! (v-w) \{kw(v-w-k+1) + (v-(k-1) w-1)^2\} (v-w-k)! < k(k-1) \cdot (v-w-1)!$. Then there exists a simple $(v, w; \{k\}, \lambda_1 + \lambda_2)$ -IPBD.

Proof: Let (X, Y, A) and (X, Y, B) be a simple $(v, w; \{k\}, \lambda_1)$ -IPBD and a simple $(v, w; \{k\}, \lambda_2)$ -IPBD, respectively. Let S be the symmetric group on X and $\pi \in S$ be a permutation. For each subset $M = \{x_1, x_2, \ldots, x_m\}$ of X, let

$$\pi(M) = {\pi(x_1), \pi(x_2), \ldots, \pi(x_m)}, \quad \pi(A) = {\pi(B) \mid B \in A}.$$

Let G be the subgroup of S fixing Y, then |G| = w! (v - w)! and for any $\pi \in G$, $(X, Y, \pi(A))$ is also a $(v, w; \{k\}, \lambda_1)$ -IPBD.

Now for two given blocks $B_1 \in \mathcal{A}$ and $B_2 \in \mathcal{B}$, if $|B_1 \cap Y| \neq |B_2 \cap Y|$, then there does not exist $\pi \in G$ such that $\pi(B_1) = B_2$. If $|B_1 \cap Y| = |B_2 \cap Y| = 0$, then the number of such permutations π is $w! \, k! \, (v - w - k)!$. If $|B_1 \cap Y| = |B_2 \cap Y| = 1$, then the number of such permutations is $(w-1)! \, (v-w-k+1)! \, (k-1)!$.

Let n be the number of permutations $\pi \in G$ such that

$$|\pi(A) \cap B| \geq 1$$
,

then, by Lemma 2, we have

$$n \leq \frac{\lambda_{1}\lambda_{2}w^{2}(v-w)^{2}}{(k-1)^{2}}(w-1)!(k-1)!(v-w-k+1)!$$

$$+ \frac{\lambda_{1}\lambda_{2}(v-w)^{2}!(v-(k-1)w-1)^{2}}{k^{2}(k-1)^{2}}w!k!(v-w-k)!$$

$$= \lambda_{1}\lambda_{2}(k-2)!(v-w)^{2}(kw(v-w-k+1)$$

$$+ (v-(k-1)w-1)^{2})w!(v-w-k)!/k(k-1)$$

$$\leq w!(v-w)!.$$

Thus there exists a permutation $\pi \in G$ such that $\pi(A)$ and B share no common blocks and therefore $(X, Y, B \cup \pi(A))$ is a simple $(v, w; \{k\}, \lambda_1 + \lambda_2)$ -IPBD.

3. Existence of NB(4,4;v) and NB(4,5;v).

The purpose of this section is to prove that for $\lambda = 4$ and 5, the necessary conditions (1) for the existence of an $NB(4,\lambda; v)$ are also sufficient. The following result is needed:

Lemma 3 [8]. There exists an NB(4,2;v) if and only if

$$v \equiv 1 \pmod{3}, \quad v \geq 7.$$

Theorem 2. There exists an NB(4,4;v) if and only if

$$v \equiv 1 \pmod{3}, \quad v \geq 7.$$

Proof: We note that a $(v, 0; \{k\}, \lambda)$ -IPBD is in fact a $B(k, \lambda; v)$. Thus, by Lemma 3, there is a simple $(v, 0; \{4\}, 2)$ -IPBD for every $v \equiv 1 \pmod{3}, v \geq 7$. Now let $w \equiv 0$ and $\lambda_1 = \lambda_2 = 2$ in Theorem 1, for each $v \equiv 1 \pmod{3}, v \geq 13$, we obtain an NB(4, 4; v) from an NB(4, 2; v). To complete the proof of the theorem, we construct an NB(4, 4; 7) and an NB(4, 4; 10) as follows:

$$NB(4,4;7)$$
: $X = Z_7$,
 A : $\{0,1,2,4\}$, $\{0,1,2,5\}$ (mod 7).
 $NB(4,4;10)$: $X = Z_{10}$,
 A : $\{0,1,3,5\}$, $\{0,1,3,7\}$, $\{0,1,2,7\}$ (mod 10).

Theorem 3. There exists an NB(4,5;v) if and only if

$$v \equiv 1$$
 or 4 (mod 12), $v \ge 13$.

Proof: The condition is necessary. To proof the sufficiency, for each $v \equiv 1$ or 4 (mod 12), $v \geq 13$, let $\lambda_1 = 1$, $\lambda_2 = 4$ and w = 0 in Theorem 1, we obtain an NB(4,5;v) from an NB(4,1;v) and an NB(4,4;v). This completes the proof.

4. Indecomposability.

In this section, we will discuss the existence of indecomposable $NB(4, \lambda; v)$ for $\lambda = 4$ and 5, and give an almost complete solution.

A transversal design $TD(k, \lambda; n)$ is an ordered triple $(X, \mathcal{G}, \mathcal{A})$ where X is a v-set, v = kn, \mathcal{G} is a collection of n-subsets (called groups) of X, \mathcal{G} partitions X, and \mathcal{A} is a collection of k-subsets (called blocks) such that each block intersects every group in a unique point, and each pair of points from distinct groups appears in exactly λ blocks. A $TD(k, \lambda; n)$ is called simple if it contains no repeated blocks. It is well known that the existence of a TD(k, 1; n) is equivalent to the existence of k-2 mutually orthogonal Latin squares of order n.

Lemma 4. If there is an $NB(4,\lambda;v)$, then any $NB(4,\lambda;v)$ can be embedded in an $NB(4,\lambda;4v)$ if $v \neq 6$ and $\lambda \leq v$, or an $NB(4,\lambda;4(v-1)+1)$ if $v \neq 7$ and $\lambda < v-1$.

Proof: If $v \ge 3$ and $v \ne 6$, then there exists a TD(4, 1; v). Let $\mathcal{G} = \{G_1, G_2, G_3, G_4\}$, $X = \bigcup_{i=1}^4 G_i$ and (X, \mathcal{G}, A_0) be a TD(4, 1; v), where $G_1 = Z_v, G_2, G_3$ and G_4 are four disjoint v-sets. For $1 \le \lambda \le v$ and $i = 0, 1, \ldots, \lambda - 1$, let

$$A_i = \{ \{a+i, b, c, d\} \mid \{a, b, c, d\} \in A_0, (a, b, c, d) \in G_1 \times G_2 \times G_3 \times G_4 \}, A_i = \bigcup_{i=0}^{\lambda-1} A_i.$$

Then $(X, \mathcal{G}, \mathcal{A})$ is a simple $TD(4, \lambda; \nu)$.

Now for each i = 1, 2, 3, 4, form an $NB(4, \lambda; v)$ on G_i and denote the block set by B_i . Let

$$\mathcal{B} = \mathcal{A} \cup \left\{ \cup_{i=1}^4 \mathcal{B}_i \right\},\,$$

then (X, \mathcal{B}) is an $NB(4, \lambda; 4v)$ which contains each (G_i, \mathcal{B}_i) as a subdesign.

If v > 4, $v \neq 7$ and $\lambda \leq v - 1$, then there is a simple $TD(4,\lambda;v-1)$. Let $(X,\mathcal{G},\mathcal{A})$ be a simple $TD(4,\lambda;v-1)$ where $\mathcal{G} = \{G_1,G_2,G_3,G_4\}$. Let ∞ be a new element, form an $NB(4,\lambda;v)$ on $G_i \cup \{\infty\}$ and denote the block set by \mathcal{B}_i , i=1,2,3,4. Let

$$\mathcal{B} = \mathcal{A} \cup \left\{ \cup_{i=1}^4 \mathcal{B}_i \right\},\,$$

then $(X \cup \{\infty\}, \mathcal{B})$ is an $NB(4, \lambda; 4(v-1) + 1)$ which contains each (G_i, \mathcal{B}_i) as a subdesign.

Let (X, \mathcal{B}) be a $B(k, \lambda; v)$, a parallel class is a subcollection \mathcal{B}' of \mathcal{B} , \mathcal{B}' partitions X. If \mathcal{B} can be partitioned into parallel classes, then (X, \mathcal{B}) is called resolvable and a resolvable $B(k, \lambda; v)$ is denoted $RB(k, \lambda; v)$. It is well known that there exists an RB(3, 1; v) if and only if $v \equiv 3 \pmod{6}$ [9].

Lemma 5. If $v \equiv 1 \pmod{3}$, $\lambda \leq v$, and there is an $NB(4,\lambda;v)$, then any $NB(4,\lambda;v)$ can be embedded in an $NB(4,\lambda;3v+1)$.

Proof: Let $V = \{\infty_0, \infty_1, \dots, \infty_{\nu-1}\}$ and (V, \mathcal{B}) be an $NB(4, \lambda; \nu)$. As $\nu \equiv 1 \pmod{3}$, there exists an $RB(3, 1; 2\nu + 1)$. Let (X, \mathcal{A}) be an $RB(3, 1; 2\nu + 1)$ and let $\mathcal{A}_0, \mathcal{A}_1, \dots, \mathcal{A}_{\nu-1}$ be the parallel classes. Let

$$\begin{split} \mathcal{B}_{ij} &= \{ \{a,b,c,\infty_{i+j}\} \mid \{a,b,c\} \in \mathcal{A}_i \}, \quad i,j \in Z_v, \\ \mathcal{B}_i &= \cup_{j=1}^{\lambda-1} \mathcal{A}_{ij}, \quad i \in Z_v. \end{split}$$

Then $(V \cup X, B \cup \{\bigcup_{i=0}^{\upsilon-1} B_i\})$ is an $NB(4, \lambda; 3\upsilon + 1)$ which contains (V, B) as a subdesign.

The following result is useful in our construction of indecomposable $NB(4, \lambda; v)$ for $\lambda = 4$ and 5.

Lemma 6 [10]. If $v, w \equiv 1$ or 4 (mod 12), and $v \geq 3w + 1$, or $v, w \equiv 7$ or 10 (mod 12) and $v \geq 3w + 1$, then there exists a $(v, w; \{4\}, 1)$ -IPBD.

Theorem 4. There exists an indecomposable NB(4,4;v) if and only if

$$v \equiv 1 \pmod{3}, \quad v \geq 10$$

with the following 6 possible exceptions:

$$v = 16, 19, 22, 25, 28, 34$$
.

Proof: The existence of an indecomposable NB(4,4;7) is equivalent to the existence of an indecomposable NB(3,2;7). It has been proved (see [5]) that there does not exist an indecomposable NB(3,2;7), so there does not exist an indecomposable NB(4,4;7).

We form an NB(4,4;10) and an NB(4,4;13) as follows:

$$NB(4,4;10)$$
: $X = Z_{10}$,

Base blocks: $\{0,1,2,7\}$, $\{0,1,3,7\}$, $\{0,1,3,5\}$ (mod 10).

$$NB(4,4;13): X = Z_{13},$$

Base blocks: $\{0,1,3,8\}$, $\{0,1,6,10\}$, $\{0,2,6,8\}$, $\{0,1,3,4\}$ (mod 13).

It can be checked that both of the above designs are indecomposable, we omit the details here.

Now let v=10 in Lemma 4, we obtain an indecomposable NB(4,4;37) and an indecomposable NB(4,4;40) from an indecomposable NB(4,4;10). Let v=13, we obtain an indecomposable NB(4,4;49) and an indecomposable NB(4,4;52) from an indecomposable NB(4,4;13). Let v=10 in Lemma 5, we obtain an indecomposable NB(4,4;31).

Now let w = 10 in Theorem 1, then for every $v \equiv 7$ or 10 (mod 12) and $v \ge 43$, there exists a simple $(v, 10; \{4\}, 4)$ -IPBD. Let (X, Y, A) be such a simple $(v, 10; \{4\}, 4)$ -IPBD, form an indecomposable NB(4, 4; 10) on Y and denote the block set by B, then obviously $(X, A \cup B)$ is an indecomposable NB(4, 4; v).

Let v = 13 in Theorem 1, then for every $v \equiv 1$ or 4 (mod 12) and $v \ge 61$, there exists a simple $(v, 13; \{4\}, 4)$ -IPBD. Let (X, Y, A) be such a simple $(v, 13; \{4\}, 4)$ -IPBD. Form an indecomposable NB(4, 4; 13) on Y and denote the block set by B, then $(X, A \cup B)$ is an indecomposable NB(4, 4; v).

Obviously if there exists an indecomposable NB(4,4;v), then $v \equiv 1 \pmod{3}$ and $v \geq 10$. This completes the proof.

Theorem 5. There exists an indecomposable NB(4,5;v) if and only if

$$v \equiv 1 \text{ or } 4 \pmod{12}, \quad v \geq 13,$$

with the possible exceptions: v = 16, 25, 28 and 37.

Proof: We show that there exists an indecomposable NB(4,5;13) by the following direct construction:

$$X=Z_{13},$$

Base blocks: $\{0,1,3,5\}$, $\{0,1,4,7\}$, $\{0,1,5,7\}$, $\{0,1,5,8\}$, $\{0,1,9,11\}$ (mod 13).

Now let w = 13, $\lambda_1 = 1$ and $\lambda_2 = 4$ in Theorem 1, then for every $v \equiv 1$ or 4 (mod 12), $v \ge 55$, there exists a simple $(v, 13; \{4\}, 5)$ -IPBD. Let (X, Y, A) be such a simple $(v, 13; \{4\}, 5)$ -IPBD. Form an indecomposable NB(4, 5; 13) on Y, then we obtain an indecomposable NB(4, 5; v).

Let v=13 in Lemma 5, we obtain an indecomposable NB(4,5;40) from an indecomposable NB(4,5;13). Let v=13 in Lemma 4, we obtain an indecomposable NB(4,5;49) and an indecomposable NB(4,5;52). As $v\equiv 1$ or 4 (mod 12) and $v\geq 13$ is a necessary condition for the existence of an indecomposable NB(4,5;v), the conclusion then follows.

References

- 1. J. van Buggenhaut, On the existence of 2-designs $S_2(2,3,v)$ without repeated blocks, Discrete Math. 8 (1972), 105–109.
- 2. J. van Buggenhaut, Existence and construction of 2-designs $S_3(2,3,v)$ without repeated blocks, J. Geometry 4 (1974), 1–10.
- 3. C.J. Colbourn and A. Rosa, *Indecomposable triple systems with* $\lambda = 4$, Studia Sci.Math. Hungarica 20 (1985), 139–144.
- 4. M. Dehon, On the existence of 2-designs $S_{\lambda}(2,3,v)$ without repeated blocks, Discrete Math. 43 (1983), 155–171.
- 5. H.-D.O.F. Gronau, A survey of results on the number of $t (v, k, \lambda)$ designs, Annals of Discrete Math. 26 (1985), 209–219.
- 6. H.Guo and H. Shen, On the existence of indecomposable B(4,3,v) without repeated blocks. (to appear).
- 7. Earl S. Kramer, *Indecomposable triple systems*, Discrete Math. 8 (1974), 173–180.
- 8. K.T. Phelps and A. Rosa, Recursive constructions and some properties of two-fold designs with block size four, J. Australian Math.Soc.(Series A) 44 (1988), 64-70.
- D.K. Ray-Chaudhuri and R.M. Wilson, Solution-of Kirkman's schoolgirl problem, Combinatorics (Proc. Sympos. Pure Math. 19, Amer. Math. Soc.) (1971), 187–203.
- 10. R.Rees and D.R.Stinson, On the existence of incomplete designs of block size four having one hole, Utilitas Math. 35 (1989), 119–152.