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1. Introduction.

Many sequences encountered in the study of combinatorics and number theory are

known to be log-concave. Although the notion of log-concavity is a fairly simple
one, it is often very difficult to prove that a sequence has this property. It is easy
to show that the sequence of binomial coefficients {(}) : n=k,k+1,--- } islog-
concave. In [5], Leib uses Newton’s identities to prove that the Stirling numbers
are log-concave. Carlitz [3] and Kurtz [4] use recurrence conditions to establish
the property, and in [1] Ahuja and Enneking use methods from classical analysis.
Brenti in [2] uses the theory of total positivity to study log-concave, unimodal, or
Polya frequency sequences. Stanley in [8] gives a survey of various techniques.

In this paper we look at a problem that apparently has not been much stud-
ied. We consider sequences {a, } whose n-th term is the number of non-negative
solutions to a given linear Diophantine equation with positive coefficients. Our
main result is, that if at least three of the coefficients are equal to 1, then the corre-
sponding sequence is eventually log-concave; the method of proof rests on finding
appropriate polynomial upper and lower bounds for the sequence. Special cases
not covered by the main result, are treated ad hoc.

Before proceeding further, we give some notation and terminology that will
be used throughout the paper. A sequence {z, : n = 0,1,--.} of positive
real numbers is said to be log-concave (LC) provided z2 > Z,.) Tn for all
n=1,2,.... If{z, : n= N,N+1,-..}is LC for some N > 0, we say it is
eventually log-concave (ELC). If an individual member of the sequence, say z;,
satisfies 7 > z;_1 z+1, We say ; is locally log-concave (LLC) in the sequence
{zs}, or just LLC if the sequence is understood. If oy , - - - , vy, are positive inte-
gers, the symbol N(a, - -+ , ams k; n) denotes the number of non-negative solu-
tions of the Diophantine equation
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Finally, we use the abbreviation {N (a1, - ,am; k; n) } to denote the sequence
{N(a, -+ ,am; ksm) :=0,1,...}.

For a given set of coefficients {a, - - - , @m} e are interested in determining
whether {N(a, - - - , &m; k; ) } is ELC. For certain cases, this question is easily
answered. For example, it is clear that the sequence {N(2; 0; 1)}={1,0,1,0,-- }
is not ELC. On the other hand, the number of solutions to the equation z; + - - -
+Zm = nis the binomial coefficient (™™7') and it is known that the sequence
{(®*™'):n=0,1,...}isLC foreach m > 1. As we shall see, the answer has
much to do with the number of the «; that are equal to 1.

In §2, we show that, for k > 3, the sequence {N (a1, -+ ,am; k;n)} is
always ELC, and we give a sufficient condition for the ELC property to hold
when k = 2. In §3 we examine the special cases of linear diophantine equa-
tions with positive coefficients, in which at most two of the coefficients are differ-
ent from 1, and we give a characterization of those that are ELC. Finally, in §4,
we show that for each set of positive coefficients {a, - - - , &t }, there exists an
integer K = K(ay,--- ,anm) such that {N(ai,--- ,am; K;n)} isLC. A coun-
terexample shows that there is no single integer X' which works for all choices of

{C\'l,"' ,am}-

2.
In this section we show that the ELC property holds for a large class of sequences
{N(o1,--+ ,am; k;n) }. We will need the following two lemmas.
Lemma 2.1,
(@ Fork>1andn>0,

N(al"" ,am;k;ﬂ)=EN(al,‘“ lam;k_l;l)

i=0
® Forkn>1,

N(al)"' :am;k;”) =N(al)"' |am;k_l;n)+N(a1)"' ,am;k;'n— l)

Proof: The first equation follows by observing that the number of solutions to the
equation a1 + - - -+ QmIm+ Y1 + -+ yp = nisequal to Y i, N(a, -, am;
k — 1; n— 4). The second equation follows immediately from (a). 1

The next lemma may be found, in one form or another, in many elementary
textbooks. We give it here in a convenient form.

Lemma 2.2. Let a, b, and n be positive integers. Write n= Q(ab) + R where
0 < R<ab,and R=gb+ r where0 < r < b. Then N(a,b;0;R) isO or 1,
and

N(a,b;0;n) =Q+ N(a,b;0; R).

40



Proof: N(a,b;0; n) is the number of integers z such that bz + » =0 (mod a)
and0 < z < (n—17) /b= Qa+ g¢; since N(a,b; 0; R) is the number of these z
in [0, q], then N(a,b;0;n) = N(e,b;0; R) + Q. Since 0 < gb+ r < ab, then
g < a, and it follows (since (a,b) = 1) that bz + » = 0 (mod a) has precisely
one solution ¢ in [0,a — 1]. Then N(a,b; 0; R) is O or 1, according as ¢ > ¢, or
t<q. |
The next theorem shows that sequences {a(n, k) : n=0,1,2, ...} satisfy-
ing the recurrence a(n, k) = a(n,k—1) +a(n—1, k) (asin Lemma 2.1(b)), and
that also have a certain type of polynomial growth, are ELC sequences. A proof
appears in [5].
Theorem 2.3. Let {a(n,k) : n,k=0,1,2,...} satisfy:
(i) forall n,a(n,0) is a non-negative integer,
(i) forall k,a(0,k)=co >0,
(iiiy forall n,k > 0,a(n k) =a(n—1,k) +a(nk—1).
Let ko be fixed and suppose there exist polynomials P(z) and Q(zx) of the same
degree d, with respective leading coefficients p and q such that for all but finitely
many i, P(5) < a(i+ 1, ko) < Q(4). Furthermore, suppose that (d + 2)p* <
(d+ 1)g®. Then {a(nko+2) :n=0,1,2,...} isELC. |

We now apply Theorem 2.3 to establish the ELC property for the numbers of
solutions of linear Diophantine equations.

Theorem 2.4. Let m > 1. If there exist integers s + t such that (a,,a¢) = 1,
then {N(ay,--- ,am:2;n)} is ELC.

Proof: Using Lemma 2.1(b) and the fact that {N(ay,--- ,am: k;0)} = 1 for
all k, it suffices, by Theorem 2.3, to show that there exist polynomials P(z) and
Q(zx), both of degree m — 1, having the same leading coefficients, such that

0] P(m) < {N(a1,-* ,am;0:m} < Q(n)

foralln

We prove (1) by induction on m. If m = 2, then (1) holds by Lemma 2.2.
Assume m > 2 and that (1) holds for m whenever there exist integers s # ¢
such that («,, ay) = 1. To prove the result is true for m + 1, we may assume
(a1, a3) = 1. Note that foreachn > 0,

[n/am1]
N(o1, - ,am1:0Gim) = Y N(or,--+ ,0m; 05— icme1)
i=0

where [ - - - ] denotes the greatest integer function. Denote this quantity by I' (n).
By the induction hypothesis, there exist an integer a, and polynomials R and S

41



such that foralli € {0,1,---[n/am11},

a(n—iami1)™ " + R(n—iams1) < N(an, -+, om; 0; n—iame1)
@ < a(n—iame1)™ + S(n—iams1)

where the degrees of R and S are less than m — 1. Summing (2) over i we obtain

f(n) <T(n) < g(n)

where
[z/ams+1] [z/am+]
fm= Y a(z—iom)™ '+ Y R(z—itmu)
i=0 i=0
and
[z/ame1] [x/am1]
g(z)= Y, a(z—iam)™ "+ Y S(z—iamn)
3=0 1=0

(such sums may be thought of as upper or lower sums for corresponding integrals;
thus the result of summation is a polynomial). Since R and S have degree at most
m— 2, itis clear that f and g are polynomials of degree m, with the same leading
coefficient. |

The following corollary is immediate.

Corollary 2.5.
(@) Ifj>3,then{N(ai,---,am:j;m} is ELC.
(ii) If at least three members of {a,--- ,an} are equal to 1, then
{N(ai,- - ,am;0;m) } is ELC. ]

Remark: As we shall see in the next section, if ;7 < 2, there are many examples
where {a1,--- ,an} contains exactly j ones, but {N(au,--- ,am; j; )} is not
ELC. Thus, three is the least number of 1°s guaranteeing the ELC property.

3.

In this section we study the ELC property of {N(a, - - - , &m; k; m) } for the cases
where at most two of the coefficients of the corresponding Diophantine equation
are greater than 1. Thus we will be considering sequences having one of the forms
{N(a,b; k;m)} or {N(a; k; n)}, with the assumption thata # 1 and b # 1. Of
course, by Corollary 2.5, {N(a,b; k;n) } and {N(a; k;n) } are ELCif k > 3, so
we are interested in what happens if k < 3.

The sequences {N(a; k;n) } with k < 2 are handled fairly easily. We first
state a simple lemma.
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Lemma 3.1. Suppose that a, b, c are integers in arithmetic progression. Then
b? —ac>0.
Proof: By assumption, there exists an integer r sothatb= g+ r,andc=a+2r.
Then ¥ —ac=12 > 0. |
Theorem 3.2. Leta > 2.
(i {N(a;0;n)} and {N(a; 1; n)} are not ELC.

(ii) {N(a;2;m)}isELCifandonlyifa=2,

@dii) {N(a;:2;m}isLC.
Proof: Note that N(a;0;n) = 1 if a|n, and is O otherwise. It follows from
Lemma 2.1(a) that N(a; 1;m) = [nfa] + 1, whichisnot LLC if n = -1
(mod a), and so (i) is true.

To prove (ii), we again apply Lemma 2.1 to get

N(a;2im) = n+ 1+ ) [i/a].
i=0

Suppose first that n £ —1 (mod a). Then

N(a;2;n+ 1) —N(a;2;m) = N(a;1;n+1)
=14+ [(n+1)/a) = 1+ [n/a]
= N(a;1;n) = N(a;2;n) — N(a;2;n—1).
Hence the quantities N(a; 2; n— 1}, N(a; 2; n), N(a; 2; n+ 1) are in arithmetic
progression, and by Lemma 3.1, N(a; 2; n) is LLC. Suppose, on the other hand,
that n= ja — 1 forsome j € Z*. Then
i-1

N(a;2im) =n+ 1+ Y [i/al =aj+ Y ak=aj(j + 1)/2.
i=0 k=0

and we have

3 N(a;2;n—1) = N(a;2;m) — N(a;1;n)
= N(a;2;n) — 7,

@ N(a;2;n+1)=N(a;2;n) +j+ 1.

From (3) and (4), we have that N(a;2;m)2 — N(a;2;n— I)N(a; 2;n+ 1) is
equal to j2 + j — N(a;2;m) = j(j + 1) — aj(j + 1)/2. Since a is an integer
and a > 2, this quantity is non-negative if and only if ¢ = 2. Thus {N(a;2; n)}
isLCif a = 2, but fails to be ELC ifa > 3. ]

We next direct our attention to N(a,b; k;n). The following elementary
lemma will be needed.
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Lemma3.3. Leta,b > 1,and (a,b) = 1, andput t = ab. Denote N(a,b; 0; n)
by c(n). Then forall j > 0, we have: c(jab— 1) = j, c(jab) = j + 1,
c(jab+ 1) =j,and c(jab+2) = jorj+ 1.

Proof: We have ¢(0) = 1,and sinceae,b> 1,¢(1) =0,and¢(2) =0 or1,and
c(ab — 1) = 1. Then the result follows immediately from Lemma 2.2. 1

Theorem 3.4. Let a,b > 1. Then {N(a,b;0;m)} and {N(a,b; 1;7n)} are not
ELC.

Proof: Using the values given by Lemma 3.3, N(a, b; 0; jab + 1) is not LLC.
Thus {N(a, b; 0; ») } is not ELC.

Next, let ¢(n) = {N(a,b;1;n)} and put (a,b) = d,t = ab/d?, a =
a/d, and 8 = b/d. For any positive 1, we have N(a,b; 0; id) = N(a, B;0;1).
By Lemma 2.1, ¢(n) — ¢(n— 1) = N(a,b;0; n), and it follows that c¢(n) =
N(a, B;1,[n/d]) (so that the sequence {N(a, b; 1; )} consists of consecutive
constant “blocks” of length d). If d > 1, thenforany i > 1, c(id — 2) =
c(id — 1) = c(id) — 1, and it follows that c(id — 1) is not LLC, and hence the
sequence {c(n)} is not ELC.

Suppose now that d = 1. We will show that forall: > 2,

(c(it — 1))* < c(it)c(it — 2).
As before, from Lemmas 2.1 and 3.3, we have
(i) —c(it—1)=i+1, c(it—1)—c(it—-2)=1.

It suffices to prove that (c(it — D)2 < (c(it — 1) + 4+ 1)(c(it — 1) — 1),
which holds if and only if ¢(it — 1) > i(i + 1). From Lemma 2.2 we have
N(a,b; 0;m) > nft, and then by Lemma 2.1,

it—1 it=1

o(it—1) 2 Y [i/t1> Y j/t=ilit—1)/2,

=0 Jj=0
and then, noting that d = 1 and a,b > 1 imply thatt > 6, it follows that
c(it — 1) > i(i+ 1). This completes the proof. 1

So we know that { N(a, b; 1; n) } isnever ELCif a,b > 1, while { N (a, b; 3; n)}
is always ELC. The question of when {N(a, b; 2; n) } is ELC is answered in the
next theorem. We will need the following lemma.

Lemma3.5. Lett € Z* andd > 2. Let {by, by, - - - } be a sequence of positive
integers satisfying bo = 1, and b, < by + j whenever (j —~1)t < n< ji—1.
Thenforall j € Z* andall nsuchthat (j — 1)t <a<jt—1,

®) bu(ba+j+ 1) <(j+ DdY b
=0



Proof: The proof is by induction on n. If n = 0, then j = 1, so that (5) holds.
Now assume the inequality holds for n. We will consider two cases. Suppose first
that nis such that ( — 1)t < n+ 1 < jt — 1 forsome j € Z*. We need to show

that
ntl

(G + DAY b0 > bari (buer + 5+ 1).
i=0

By the induction hypothesis, and using the fact that by,) < b, + 7, we get

ntl
(G+ 1A bi> ba(by+ 5+ 1)+ (j + Db
i=0
> (bw1 = J = Dbar1 + (J + 1)dbpis
> bpsi (b1 +(d-1(j + 1))
> bur1 (b1 + 7+ 1)

sinced > 2.
Now suppose that n = jt — 1. We need to show that

ntl

(G+2dY b > bov1 (bast + 7 +2).
i=0

As before,

nt+1 n
(G+2DAY bi> (ba+ j+ Db+ dY b+ (j + Ddbu
1=20 i=0

> burt (bast = — 1) +d Y bi+ (5 + 2)dban
=0

13
= b1 (b1 —F = 1+d(j +2)) + ) b
i=0
> bpe1 (bpe1 +7+2)
which completes the proof. | |

Theorem 3.6. Let a,b > 1, with (a,b) = d. Then {N(a,b;2;n)} is ELC if
andonly if d = 1. In particular, if d > 1, thenforall j € Z*,N(a,b;2; djt—1)
isnot LLCin {N(a,b;2;n)}, where t = ab/d®.

Proof: Ifd= 1, then {N (e, b; 2;n) } is ELC by Theorem 2.4. Soassume d > 1,
fix j, and put » = djt. Letc(i) = N(a,b; 1;1),andput T = N(a,b;2;r — 1).
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By Lemma 2.1(b), it suffices to show that T2 — (T — c(r — 1))(T + ¢(1)) < 0,
ie., that

©6) T(c(r) —e(r—=1) >ec(De(r-1).

We use Lemma 3.5. Let o = a/d, 8 = b/d,and t = ab/d? = af. Asnoted in
Theorem 3.4, ¢(n) = N(a,f,1,[n/d)),and by Lemma 3.3, c(r) —c(r — 1) =
7+ 1. By Lemma 2.1, we have

jt-1

T=dY  N(a,p;1;d).

i=0

From Lemma 2.1, N(a, 8; 1;n) — N(a, 8; 1;n— 1) = N(«, £; 0; n), and from
Lemma 2.2, N(a, 8;0; k) = [k/af] + (0 or 1). Thus, since ¢t = a3, then for all
integers n such that jt < n < (j + 1)t — 1 for some j, we have

N(a,8:1;m) — N(a, B 1;n—1) = N(e, ;0;m) = j or j+ 1.
Now the conditions of Lemma 3.5 are satisfied, and the inequality (6) follows. i

4.

In this section, we shall prove that for each set of positive coefficients {ay, - - - ,an},

there exists an integer K = K (a1, - ,am) Suchthat {N(a1,--- ,am: Kin) }is
LC. It will be convenient to use generating functions. Itis clear that the generating
function for {N(ay,- - - , ap; 0; n) } is given by

flan, -+ ,am) = [J(1 — 22) !

i=1

where we write o; = o( ), which is the product (or convolution) of the generating
functions for {N(a;:0;m)}, {N(a2;0;n)},--- ,{N(am: 0; n)}. The generat-

ing function for {N(a1,--- ,am; ksm }is (1 — z) ~*f(au,-- - ,am). Itis well
known that if two or more sequences are LC, then their convolution is also LC (see,
e.g. [2]), and we use this in what follows. First, we give a counterexample to show
that there is no fixed value K such that the sequences {N(a1,--- ,am; K;n)}
are LC for all choices of positive integers o, - -+ , Q.

Example 4.1: Let m be a positive integer, and puta; = 2 (§ = 1,2,--- ,m).
Forallm, k > 0,puta(n, k) = N(ay, - ,an; k; n). Then we have

a(0,k)=1; a(l,k)=k; a(2,k)=m+ (“; 1),
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and a(1,k)2 — a(0,k)a(2,k) = (k> — 2m — k) /2; this is negative if m is
greater than k(k — 1) /2. Then for every value of k, we can find an m so that
{N(ar, - ,am; k;m)} (witho; =2 (i=1,2,--. ,m))isnot LC.

The main result of this section is, that for a fixed choice of a1, - - - , atpy, the
sequence {N(ai,--- ,am; 3m; n)} is LC. This is proved first for the case m = 1.
'We begin with some preliminary lemmas.

The following notation will be used throughout the case form = 1.

a > 1 is an integer,
=N(x0n  bs=N(a;l;n)
&a=N(a;2;n) dy=N(w;3;n)
Lemma 4.2.

(i) an=1if a|n, and is O otherwise.
@ii) by=1+[n/a].

Proof: (i) is obvious, and (ii) follows immediately from Lemma 2.2. [ |

The next lemma gives some explicit summations involving the greatest in-
teger function. The proofs of these formulas are straightforward, and we omit
them.

Lemma 4.3. For a non-negative integer n, put r = n—afn/a), and t = [n/a].
Then

@ Y Ui/el=(a/Dt(t+ D+ (1+)t+r—n

j=0

(i) Ellf/al-t( )+(/2)(t+1)_(2/8)(2t+2)

(iif) 2[:/«:42 = (/4 ( ) +2(r+1).
j=0
Lemma 4.4. With r and t defined as in Lemma 4.3,
=+ D(n+r+2)/2,

dy = (a/6)( )(2(.\:12—04-1»3).;-t(1.,..,.)(71 a+2)/2+ (nzz)

Proof: We have ¢, = Y 1o b, and dy 3 ;.9 ¢x. Lemma 4.3(i) then allows the
evaluation of ¢,, and then using Lemma 4.3 (ii) and (iii), we compute d,,. [ ]
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Theorem 4.5. For all integersn > 0 and o > 1, and with v = v(n,a) and
t = t(n, o) defined as above, &2, — dydn2 > 0.

Proof: If & = 2, then by Theorem 3.2(iii), {c, } is LC, and then {d,} is also LC
since it is a convolution of LC sequences. Thus we suppose that « > 2. Letn
and & > 2 be fixed; so that ¢ = [n/a] and r = n— ot. By aroutine computation,
we have
d'2;+] —dpdysz = 0,2,4-1 — bnr2 dy.

Define 8(3, @) to be 1 if « divides 1, and 0 otherwise. Then

bz =t+ 1+ 8(n+ 1,a) + 8(n+2,a)

Ca1 =@+ D+ (+1D)(n+7+2)/2+8(n+1,q).

We consider four cases.

Case 1: Suppose that a|n. Thenr =0, n= ot bpez =t + 1,601 = (E+ 1) +
(t + 1)(n+ 2)/2, and by a routine computation, we have

&,y — dndusz =

{2(n® + 15n+ 36) + t(n* + 30n+ 72) + (—n* + 15n+ 36) — na}/12
This expression is clearly positive if ¢ > 0, and since n= ot,ift = 0, thenn =0
also, and then the expression reduces to 3.
Case 2: Supposethata|(n+1). Thenn=oat+(a—1),r=a—1,bn2 =t+2,
and cpyp = (t+2) + (¢ + 1)(n+ a+ 1); we compute

d3.+1 —dpdn2 =
{2(2 + 11n+ 22) + (312 + 420+ 87) + (n + 38n+ 85) — (n+ Da}/12
In this case, n+ 1 = a(t+ 1), s0ift = 0, the expression reduces to 3a+ 4, which
is positive. If t > 0, we have w2 — (n+ Da = (t + Da(at — 2) + 1, which is
positive, and so the whole expression is positive.
Case 3: Suppose a|(n+ 2). Then in a similar way, we get

B,y —dndz =
{£2(n* + Tn+ 10) + t(3n® + 24 n+ 36) + (v + 16m+ 78) — (n+2)a}/12
which is easily seen to be positive.
Case 4: Suppose that o does not divide any of n,n+ 1,n+ 2. Thenn=at +r,
where 0 < r < a — 3, and we find that

@2, —dudmz =
(t+l){t(n2+15n+36)+(15n+36)+‘r(4nt+15t+6m-15)+1'2t—('n—r)a}/12

which is clearly positive. [ |
We can now state the main result of this section.
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Theorem 4.6. The sequence {N(a1,--- ,0m;3m;n)} is LC.

Proof: Foreachi,1 < i < m, the sequence {N(«;; 3; ) } is LC, and the corre-
sponding generating functionis (1-2z) -3 f(a;). Then the sequence {N(a,---,

@m; 3m; m) } has generating function (1 — ) 3™ f(ay,- - - ,am), and must be
LC since it is the convolution of LC sequences. |
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