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Abstract. A star S, with g edges is a complete bipartite graph K 4. Two figures of the
complete graph K, on a given set of n vertices are compatible if they are edge-disjoint,
and a configuration is a set of pairwise compatible figures. In this paper, we take stars
as our figures. A configuration C is said to be maximal if there is no figure (star) fZC
such that {f} U C is also a configuration. The size of a configuration F, denoted by
| F, is the number of its figures.

Let Spec(n, g) (or simply Spec(n)) denote the set of all sizes such that there exists
a maximal configuration of stars with this size. In this paper, we completely determine
Spec(n), the spectrum of maximal configurations of stars. As a special case, when n is
an order of a star system, we obtain the spectrum of maximal partial star systems.

1. Introduction.

Let S, be a star on ¢ + 1 vertices. A complete graph K, is said to have a
G-decomposition G[ ] if it is a union of edge-disjoint subgraphs of K, each of
which is isomorphic to a fixed graph G. The basic problem connected with the
G-decomposition is to determine, for a given graph G, the necessary and suffi-
cient conditions on = for the existence of a decomposition G[n}. When the graph
G is itself a complete graph Ky, then the decomposition K[7] is known as a
balanced incomplete block design (BIBD) [1]. For the case where G is a star, the
problem is completely settled by M. Tarsi in a more general way {3] . As a special
case, he proved that the necessary and sufficient conditions for the existence of an
S,-decomposition are that n > 2g and n(n— 1) = 0 (mod 2¢). This decom-
position may also be referred as an (=, g) star system (or simply a star system).
If we start with a fixed g, then for the nunmber n which does not satisfy the nec-
essary and sufficient conditions mentioned above we can consider the problem of
packing K, with as many stars, S, as possible.

Two figures of the complete graph K, on a given set of n vertices are compatible
if they are edge-disjoint, and a configuration is a set of pairwise compatible figures.
In what follows, our configuration will be a set of pairwise edge-disjoint stars of
the complete graph K,,. A configuration C is said to be maximal if there is no star
f & C such that { f}cupC is also a configuration. The size of a configuration F',
denoted by | F|, is the number of its stars. Obviously, if |F| = |(3)/q]. then F
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is maximal. We are also interested in configurations which are maximal but have
size less than | (3) /¢]. Thus, let Spec(n, g) or simply Spec(n) denote the set of all
sizes such that there exists a maximal configuration of stars with this size. In this
paper, we completely determine Spec(n), the spectrum of maximal configurations
of stars. As a special case, when n is an order of a star system, we obtain the
spectrum of maximal partial star systems.

For the rest of this paper, without mentioning otherwise, we consider configu-
ration of K, where n=mq + 3,1 < s < g, in which the figures are stars. Since
there is no star S, in K,, we also assume m > 1. In what follows, we will use a
(g+ 1) x barray A = [a;;] to represent a configuration with b stars where the first
row represents the vertices of the centers and the degree one vertices of the jth
star are a3, @3, ... , a(q+ ;- Figure 2.1 is an example of such a representation.
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A=|22343
G 136454
47575

Figure 2.1

Let A = [a;;] be an array which represents a configuration F. Then, by obser-
vation, the degree of a vertex v in F, deg »(v), can be obtained as ag + 8 where
« is the number of a5, 7 = 1,2,... , b, such that a;; = v and 8 is the number of
a;; which is equal tov, 1= 2,3,... ,¢g+ 1 andj = 1,2,... ,b. Now, consider
a configuration F on n vertices. If for each vertex v, the degree of v in the graph
K,\F, the complement of F, is less than g, then F is a maximal configuration,
that is, if deg z(v) is greater than n — 1 — ¢, we conclude that F' is a maximal
configuration. Since, we will use this result often, we list it as a lemma.

Lemma 1.1. In a configuration F, if degz(v) > n— q for eachv inV(K,),
then F is maximal and the number of columns of an array which represents F is
in Spec(n). Conversely, if F is a configuration in which there is a vertex of degree
1 Iess thann — q, then F is not a maximal configuration.

Corollary 1.2. min Spec(n) > [ﬁ-';;q‘i]

What we try to prove in this paper is the following
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Theorem 1.3. (i) Spec(n) = {s,s+1,... ,2s—1}ifn=g+sandl1 < s<q.
@) Spec(n) = {: [%52| <z < | %5 | }irn > 294 1.

2. The main results.

We will start our construction with the smaller n. (We note here that the max-
imal configuration of size min Spec(n) is just the smallest possible value of our
construction.)

First, considern = g+ s. Letb = s+t,86 = g—t,andy = | 4L where
1<s<gand0 <t < g Also, let V(K,) = {1,2,3,...,b,v1,v2,... ,v5}
and construct two arrays B and C as in Figure 2.2.

2 3 4 b 1 vp v v ... Ui

P R 1 P

'74.-1 '7-!.-2 '74.-3 '7—'1 '7 v.s 1;5 v.s 1;5
Figure 2.2

Now we are ready to construct an array which represents a maximal configura-
tion, If [5}] > g — 1, then A; (Figure 2.3) can be defined as follows: As(1,j) =
531 <7<b; A3(1,)) = vp1 ifB(1 =2+ j—1=sz+rforsome0 < r< s,
where2 < i< g+1,1 < j< bandbi+j < 88; A3(4,j) =B(i+y—q—1,5)
ifbi+j > sb.

1 2 3 b 1
v u vT ... Y1 VY2 V2 V2 ... VU2 V3 V3 ...

A3:

vs vs

Figure 2.3

For the situation | $2] < ¢ — v, A4 (Figure 2.4) can be defined similarly except
that the whole of B is in the bottom of A,; foreach z < e, v, occurs b + 1 times
and v, occurs b’ times whenevere < y < §. (b is a number between s and b such
that (g — y)b=6b' +¢,0 < e < §.)
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Figure 2 4

Itis not difficult to see thatif § > g—-y, such an integer solution for b’ exists. Hence
g—t=6>q—n,thatis,t < |24=L| . This implies thatt < s — 1. Thus we can
construct A4 foreach0 < t < s — 1, and in the corresponding configuration F',
degp(v) > 8,v € V(Ky4,), 50 by Lemma 2.1 we have a maximal configuration
of stars whenever 0 < t < s — 1. Equivalently, {s,s + 1,...,2s -1} C
Spec (g + s). Now, suppose = € Spec (g + s), then the following two inequalities
hold:

(N zg>(g+s—z)s,and (2)z¢ < x(zz— 1)

Itis easy to see s < = < 23— 1. Hence we have the following

+{(g+s—12)z.

Proposition 2.2. For1 < s< g, Spec(g+s) = {s,s+1,...,25—1}.
Next,if n=2g+3s,1 < s < g, and [’—%?1] < t < g. We note here that
g+ s+ [8g22] = [SzaLzzqiml] = min Spec(2¢+s). Leth = g+s+1t,6=qg—t
and 5 = |4 |. B and C are defined as in Figure 2.2. We will construct As ina
similar way. First, if | {&52¢] > g — v, A5 (Figure 2.5) can be defined as follows:
As(1,7) =7, 1 <7< b As(c,j) = v ifB(i—2)+j—1=(g+ s)z+rfor

some0 <r<g+swhere2 <i1<g+1,1<j<bandbi+j<(g+ )6
As(i,7) =B(i+y—q—1,7)ifbi+ ;> (g+ 8)é.

1 2 b
" v wee U V2 V2 ... V2 V3 V3
As: - Vs VU5 ... Vs
r
Lg
e . o
Figure 2.5
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Let g be the number of rows in As (Figure 2.5) which are below the rows con-
taining the v;’s,s=1,2,...,8. If g < s, then

(g+8)5+s(g+s+t) = (g+8)8+(3—g)(g+s+t)+g(g+s+t) > q(g+s+t).

This implies that ¢ < 4§ < [44*2| which is a contradiction. Hence g > s,
and we obtain a maximal configuration by Lemma 2.1. Secondly, if [mfuj <
g — 7, similar to the case n = ¢ + s, the matrix is similar to A4 except that
g+ s < b’ < b. The fact that it represents a maximal configuration follows by
a direct computation; we omit the details. So far, we have {g + s + [5{7’1] .

g+ s+ [£42] 41,... 2+ s} C Spec(2q+ s). For the large values, we need
other constructions. Letb = 2g+ s —y, 1 < y < s — 1. By the array in Figure
2.6, it is not difficult to see that b+ 2y € Spec (2¢+ s), thatis, {2¢g+s+1, 2g+
s+2,...,2¢+23—1} C Spec(2g+ s).

1 2 3 ... b-1 b uw v v, v ... v Y]
2 3 4 ... b 1 1 g+1 2g+1
3 4 s .. 1 2 2 g+2 2g+2
As:
b
1
2
 g+1 g+2 ¢+3 ... g¢-1 ¢ e 2q .
Figure 2 .6

We still have some values left. Let us start with another array which represents
a maximal configuration with size 2¢ + 23 — 1. See Figure 2.7. (We omit the
detail definition of A;.)

1 2 3 2g-22g-1| vy v ... v, | n n ... Y
2 3 4 ...2¢-1 1 1 1 1 | g+l g+1 ... g+l
3 4 5 1 2 2 2 ... 2 |g+2 ¢+2 ... g+2
P I N I o S S
g g+tlg+2... ¢g—=2 g-1]|g-1¢g-1...¢-1|2¢-12¢-1... 2¢-1
2q 2q 2q ... 2q 2¢ q9 q ... ¢ 2g 29 ... 2¢
Figure 2.7
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As can be seen in the array, we have already used up the degree of the vertices
1,2,...,2¢q, and we are going to adjust the degree of v;,v,...,v, in order to
obtain a maximal configuration with larger size. From A7, we have that in the
representing configuration F, degp(v;) = 2q,1 = 1,2,...,s. Thus, K,\F
has () edges. If () < g, then 2¢ + 25 — 1 = max Spec(2g + s), we are
done. If (3) > ¢, we can adjust A7 by replacing the 2¢— 1 edges {g+ 1,1}, {g+
2,1},...,{2¢-1,1},{v1,1},{v1,q+1},... ,{v1,g+3-2},{v2,g+3-2+1},
ceor{v2,9+2(5=2) }, {v3,g+2(s~2) +1},... ,{v3,9+2(s-2)+(s-3)},...,
and{v.-,q+§:}_,(s—j)+h—l} (in order) with {g+1,v1},{g+2,un},...,{q¢+
(3—2): v }' {q+3—2+ 17"2}: reey {2q—l,v;}, {”l s ”2}){”1 ,03}: seey {‘U[, ‘IJ,},
{v2,v3},...,{v2,v5}, {v3,va},... , and {v;, v+ 1} Tespectively, where the first
element of the edge represents the center of the star in which this edge belongs,
andz;-a,(s— /) + h— 1= g — 1. Inthis way, we can add one more star with
center 1 whoseedges are {1,g+1},{1,¢+2},...,{1,2¢g—1} and {1, v; }. This
implies that 2¢ + 2s € Spec(2g + s). Now if () — g > ¢, we can use a similar
process to obtain a new star with center 2 except the new edges which we will
use are those g edges {1},’, Vi+h+l }, ceny {v.', v,}, {v.-“ y Vi+2 }, ceey {v,‘“ , v,}, ceey
{v,-,v,-.;.'}. (Replace{l,2},{q+2,2},{q+3,2},... ,{Zq— 1,2}, {v,-+;,+1,2},
{U,'+h+2, 1}, {u,-,q + 2}, ...,and {v;,2q - l} (in order) with {1 ,v,-”,...z}, {q +
2,v},...,{2¢-1, v,-},{v.-, vieh+1}s {Vi, v,-+,,+2},{v,- Vit he3 },. .. ,{U,', Ustyooos
and {vj, vj.i}, respectively.) We will stop this process whenever the number of
edges which are not used is less than g. Since the same v; will not occur in the
same column which is not difficult to see, thus we have

Proposition 2.3. Forl < s< g,

Spec(2q+ s) = {q+ s+ [i(qT*;ﬂ]

g+s+ [8—(12—;—8)- +1,...,2¢+28-1+ l(;)/qJ}

On the casen = 3q + s, let" = 2q + s. Construct a maximal configuration
F onrl vertices. Add q new vertices and2 q + s stars by joining each of the nl
vertices to every new vertex. Then the new configuration is also maximal. Thus
we have min Spec(3q + s) = min Spec(2q+ 8) +2g+ 8, and2g+ s+ z €
Spec(3q + 8) foreach z € Spec(2q + s). By Proposition 2.3 we conclude that

s(g+ 3) s(g+ s)
{3q+23+ [T],3q+23+ [—zq ]+ 1,

,4q+3s—1+[(;>/qJ } C Spec(3g+ s).
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If we start with a maximal configuration of size4 q + 3 s — 1, then we can follow
a similar process as in the case n= 2q + s to obtain Spec(3 q + s). We will give
the configuration of size 4 q + 3s — 1 and omit the details. (Figure 2.8.)

Proposition 24. Forl < s<g,

s(g+s 8(g+s
Spec(3g+ 5) = {3g+25+ | SIEN] 30404, [HOFI]
2q 2q
(3g+3)(3¢g+s-1)
ey 2 .
q
1 2 ... 2g-1)2g+1 2g+2 ... 3q | 2¢+1 2¢+2 ... 3q
2 3 .. 1 2q 2¢g ... 2¢ q q q
3 4 ... 2 1 1 1 g+l g+l ... g+l
M]i . . . . . . . . .
g g+l g-1 | ¢=2 ¢-2 ... ¢g-2}2¢-2 2¢-2 ... 2¢-2
2g 2¢ 2q g—-1 q-1 g—1"'2g-1 2¢-1 ... 2¢-1
v v ... Y v ” UR v v ... v,
2qg 2¢ 2q q q q 2¢+1 2g+1 ... 2g+1
Mp:| o e : s : : o
-2 ¢-2 ... ¢=2|2¢-2 2¢-2 ... 2¢-2|3g-1 3g-1 ... 3¢-1
g—-1 g¢g-1 ... ¢-1]2g-1 2¢-1 ... 2¢-1 3q 3¢ ... 3q
Ag: [ M | M2 ]
Figure 2.8

Now, we are ready o consider n= mq + s, m > 4. By a direct counting, we
have

min Spec(n) = min Spec(3g + 8) + (3g+s)(m—3) + (mz— S)q
= min Spec(2q + s) + (2g+ s)(m —2) + (m2_ Z)q.

As a special case of n= q+ s, Spec(2q) = {g,9+1,...,2q—1}. If m iseven,
then

m—2 _'m—2
L)

Spcc(n)g{z : :1:=y+(2q+s)('m—2)+( 5

+21+z22+ ...+ 2n2,

Whel’ey e Spec(2q+ 3) andz. e SpeC(Zg),i: 1,2)-.~ , m2_2}.
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This implies that

Spec D {q+s+ [ s(g + 3’] +(2g+8)(m—2)+ ( )

(2g+38)(2q+s— l) m—2 m—
2 - =,
[ or +(2g+s)(m-2)+ s )9 2 q
The last element of the set is equal (o
I-(‘mq+ 8)(2"T;q+ i l)J = max Spec(mgq+ s).
For the situation m is odd and m > 3, we have
m-3 m-3
Spec(n) D 1z :z=y+(3g+s)(m-3)+ 2 q——-2— .
+21+2+...+ 2pa,
wherey € Spec(3q+ s) and z; € Spec(2gq),1=1,2,... ,—mZ;s}

This concludes this case.

Proposition 2.5. For 1 <s<gq, m >4,
-2
Spec(mq+s) ={q+s+ [*”(Lz’;fl}(zws)(m—zn (’"2 )q,
mg+s
-|("5) /1)
_ [(mq+8)(mq+s—q)] mq+s)/
= T " q b

Combining the above propositions, we have proved Theorem 1.3. As a special

case when ("‘g"’) /q is an integer, we obtain a star system of order mq + s and also
in this case we have the spectrum of partial maximal star systems.
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