An Alternative Proof of Hadamard's Determinant Theorem

Cantian Lin
Department of Mathematics
Southern Illinois University
Carbondale, IL 62901-4408

I. Introduction

An *n* by *n* matrix $H = H(h_{ij})$ with all its entries $h_{ij} = +1$ or -1 is called a *Hadamard matrix* of order *n* if

$$HH^T = nI$$

where H^T is the transpose of H.

In [4] by showing Hadamard's inequality:

$$|\det A|^2 \le \prod_{i=1}^n \sum_{j=1}^n |a_{ij}|^2$$

for a complex matrix $A = A(a_{ij})$ of order n, Hadamard showed that if $|a_{ij}| \le 1$ for i, j = 1, 2, ..., n, then

$$|\det A| \le n^{n/2} .$$

The bound is attained if and only if $AA^* = nI$ with $|a_{ij}| = 1$, for i, j = 1, 2, ..., n. In particular, when all the entries of A are real, the bound is attained by A if and only if A is a Hadamard matrix. There have since been many different proofs of Hadamard's inequality; see, for example, [1], [2], [3], [5], and [6].

The purpose of this paper is to present a different, simple and elementary proof of Hadamard's determinant theorem by showing a weaker inequality:

$$|\det A|^2 \le \left(\frac{1}{n}\sum_{i=1}^n\sum_{j=1}^n|a_{ij}|^2\right)^n.$$

Note that Hadamard's inequality is not used here although it implies our inequality by the geometric arithmetic mean inequality.

II. Hadamard's determinant theorem

Let A be a complex matrix of order n and let A^* be the conjugate transpose of A. A is called *unitary* if $A^*A = AA^* = I$.

Theorem. (Hadamard's Determinant Theorem) For any complex matrix $H = H(h_{ij})$ of order n with complex entries $|h_{ij}| \le 1$ for i, j = 1, 2, ..., n,

$$|\det H| \le n^{n/2} \,,$$

and the equality holds if and only if $HH^* = nI$ with $|h_{ij}| = 1$, for i, j = 1, 2, ..., n.

Proof: From the well-known result of matrix theory, since HH^* is nonnegative definite, there exists a unitary matrix U, such that

$$HH^* = U\operatorname{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2)U^* \tag{1}$$

where σ_i^2 's are the eigenvalues of HH^* , and the sum of all the eigenvalues of HH^* is equal to the sum of all the diagonal entries of HH^* , we have

$$\sum_{i=1}^{n} \sigma_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} |h_{ij}|^2.$$
 (2)

Since a geometric average is not greater than an arithmetic average, we have

$$\prod_{i=1}^{n} \sigma_i^2 \le \left(\frac{1}{n} \sum_{i=1}^{n} \sigma_i^2\right)^n \tag{3}$$

and the equality holds if and only if $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_n^2$. Thus, by (1), (2) and (3),

$$|H|^2 = \prod_{i=1}^n \sigma_i^2 \le \left(\frac{1}{n} \sum_{i=1}^n \sigma_i^2\right)^n = \left(\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n |h_{ij}|^2\right)^n \le n^n.$$

So

$$|\det H| \le n^{n/2}$$

and equality holds if and only if $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_n^2$ and $|h_{ij}| = 1$, for $i, j = 1, 2, \dots, n$.

But this condition implies by (2) that $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_n^2 = n$ (i.e. $HH^* = nI$) and $|h_{ij}| = 1$, for $i, j = 1, 2, \dots, n$.

In particular, we have

Hadamard's real determinant theorem. For any real matrix $H = H(h_{ij})$ of order n with real entries $|h_{ij}| \le 1$ for i, j = 1, 2, ..., n,

$$|\det H| < n^{n/2},$$

and equality holds if and only if H is a Hadamard matrix.

References

- 1. E.F. Beckenbach and R. Bellman, "Inequalities", Springer-Verlag, Berlin, 1961.
- 2. R. Bellman, A note on determinants and Hadamard's inequality, Amer. Math. Monthly 50 (1943), 550-551.
- 3. T.M. Cover and J.A. Thomas, Determinant inequalities via information theory, SIAM J. Matrix Anal. Appl. 9 no. 3 (1988), 384-392.
- 4. J. Hadamard, Résolution d'une question relative aux déterminants, Bull. Sci. Math. 17 (1893), 240-246.
- 5. M. Marcus and H. Minc, "A Survey of Matrix Theory and Matrix Inequalities", Allyn-Bacon, 1964.
- 6. A.M. Ostrowski, On some metrical properties of operator matrices and matrices partitioned into blocks, J. Math. Anal. Appl. 2 (1961), 161-209.