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Abstract

In this paper we look at families {G,} of graphs (for n > 0)
for which the number of perfect matchings of G, is the nth term
in a sequence of generalized Fibonacci numbers. A one-factor of
a graph is a set of edges forming a spanning one-regular subgraph
(a perfect matching). The generalized Fibonacci numbers are the
integers produced by a two-term homogeneous linear recurrence from
given initial values. We explore the construction of such families of
graphs, using as our motivation the Ladder Graph L,; it is well-
known that L, has exactly Fn4; perfect matchings, where F, is
the traditional Fibonacci sequence, defined by Fi = F> = 1, and
Fn+1 = Fn + Fn-b

1 Introduction

Almost every student of combinatorics or graph theory runs across the
pleasing result that the Fibonacci numbers count the number of perfect
matchings of the ladder graph L, = P, x K. More precisely, let m(G) be
the number of perfect matchings of G; then m(L,) = F,41. This result
is not easy to generalize, and we are not aware of any other examples in
the literature. As a result, we will look at constructing families of graphs
whose matching numbers are given by a simple recurrence. We wish to re-
strict ourselves to connected simple graphs for the moment. For definitions
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and theorems involving graph theory, the reader is referred to standard
texts on the subject, such as [2]; for definitions and theorems involving
recurrences and combinatorics, the reader is referred to standard texts on
combinatorics, such as [3].

The graph G,, illustrated in the following figure consists of n copies of
Cj, each joined to the next by a bridge. The bridges cannot appear in any
perfect matching of the graph, so their only use is to make the graphs G,
connected. It is not hard to see that G, has 2" perfect matchings.

A similar construction will work for any sequence a, = r" for any
positive integer r, and this sequence of numbers satisfies the one-term linear
recurrence a, = ran—1. We simply replace the C4 with a connected graph
G containing exactly r perfect one-factors, and the same process works.

2 Connecting with pairs of edges

We may view the ladder graph as consisting of n copies of G = K3, each
joined to the next by an edge-cutset of two edges. This raises the natural
question: what happens if we generalize this construction to arbitrary G in
place of K3? It is important that the graph G be connected and have one
or more perfect matchings. We also assume that the two edges that join
a copy of G to the next (or previous) copy of G are incident to adjacent
vertices of G.

If G is Cy4, we get a subsequence of the Fibonacci numbers; n copies of
C, joined by a pair of edges gives us Lj,, the ladder with 2n rungs, and
the sequence we get is F3, Fs, F7,.... We explore two more cases.

If G is K4, we get a family G, of graphs that look like
Careful thought will reveal that the matching number of the graph satisfies
the recurrence

m(Gn) = 3m(Gn-1) + m(Gn-2) + m(Gn-3)....

This comes from counting the matchings according to where the first pair
of “connector edges” is used. This sort of recurrence is “open-ended” in the
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sense that the number of terms depends upon n, but many such recurrences
have shorter versions. For example, the recurrence

T,= T, Ti=1

i<n
gives us the powers of two (T; = 2'~! for i > 1), just as does the recurrence

T =2Th, =1

If we ignore the first pair of “connector edges” from the leftmost copy of
K to the next, the total number of matchings that will result is 3m(G,_;),
as we choose one of the three matchings of the leftmost copy of K, and any
of the m(Gp—1) matchings from the rest of the graph. If either of those two
connector edges is used, they both must be used. There is only one choice
of edge from the leftmost K4, and we decide to ignore the second set of
connector edges for the moment; this gives us m(G,~2) ways to complete
the matching. If the second set of connector edges is used but the third set
is not, then we have m(G,_3) matchings; and so on. Thus the number of
matchings of G, is given by the recurrence, as asserted earlier.

This, of course, is not a two-term recurrence, although the sequence
{an = m(Gr)} does satisfy the two-term recurrence a, = 4an—1 — 2ap—2,
with a; = 3 and a3 = 10. The resulting sequence, known to the Online En-
cyclopedia of Integer Sequences as A007052 ([1]), also counts “the number
of order-consecutive partitions of n.” That the given two-term recurrence
yields the same sequence of numbers as the original generalizes to a result
that is probably well-known.

Theorem 1 The recurrence relation ay, = bay_1+an_z2+... describes the
same sequence as &p = (b+ 1)an—1 — (b — 1)an—2, given the initial values
ai=o;=1and ag =b.

Proof Clearly ap; = b from the open-ended recurrence relation, and ag =
b is given. It is easy to confirm that both recurrences give the same value
for az = oz = b? + 1. We may proceed by induction; suppose a, = o, for
n < N. Then we write

ant1 = (b+ oy — (b—1)an-1 =bay +any — (b—1)an-1.
Now we replace the last ay by the open-ended recurrence for ay to get

aye1 =bay +bay_y +any—2+ - —(b—1)ay_;.

Collecting the ay_; terms, we get ay4y =bay +ay_1+ay_2+...,
establishing that an41 = an41- ad
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3 Eight-cycle with chords

Consider the building block G:

and form a sequence with first term G and general term

As before, G,, contains n copies of G. We think of G4, as being formed
from G, by attaching a copy of G to the left of G, using two connector
edges that join up to the ends of the “anchor edge,” the edge accented in

We write A, for the set of all one-factors of G,,, and B,, for the set of
“anchor factors,” one-factors that contain the anchor edge. We shall define

an = |An| and b, = |By|.
From the following diagram we see that a; =3 and b; = 2:

Now we count the one-factors of Gn4;. Factors that do not contain
the connectors are the union of a factor of G with a factor of G,, with no
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restrictions, so there are 3 x a,, such factors. The factors that contain both
connectors are in one-to-one correspondence with those that contain the
two highlighted edges in

So we can multiply the number of anchor factors of G, by the number of
factors of G that contain the right-hand edge; but these are immediately
seen to be the anchor factors of G, so there are 2 x b,, of these factors, and

an+1 = 3an + 2bn.

In order to evaluate b, in terms of earlier members of the sequences,
observe that an anchor factor of G, +1 must look like one of the following:

in each case there are 2 ways to complete the intersection of the factor with
the left-hand G and b,, ways to complete the remainder. So

bn+1 = 4bn.
Theorem 2 a, = 4™ — 31,

Proof b =2 and b,41 = 4b, together give b, = 22”1, So
Qniyl = 3an + an = 3a-n + 22n = 3a,, + 4".
Now apply induction. Case n =1 is true. Assume case n =r. Then
Qryl = 3ar + 4"
3(41" _ 31’-1) 447
3(47) + 4" - 3(3™1)

4(4") - 3(3"7)
— 4r+1 - 31‘,

]

155



as required. 0
The sequence for a,, 3,13,55,229,943, ..., is sequence A093834 in {1].

4 Conclusion

Many other small graphs can serve for G in these examples, and a variety
of generalized Fibonacci sequences may be obtained. These problems are
part of a more general family of matching-enumeration problems known
as domino tilings, and these have a variety of applications in chemistry
and elsewhere. Questions include whether any sequence of generalized Fi-
bonacci numbers may be realized as the matching numbers of a family of
inductively-defined graphs, and whether sequences arising from other re-
currences (as for instance three-term recurrences) may be so realized.
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