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ABSTRACT. For graphs G and H, H is said to be G-saturated if it does not
contain a subgraph isomorphic to G, but for any edge e € H¢, the complement
of H,H + e contains a subgraph isomorphic to G. The minimum number
of edges in a G-saturated graph on n vertices is denoted sat(n,G). While
digraph saturation has been considered with the allowance of multiple arcs
and 2-cycles, we address the restriction to oriented graphs. First we prove that
for any oriented graph D, there exist D-saturated oriented graphs, and hence
show that sat(n, D), the minimum number of arcs in a D-saturated oriented
graph on n vertices, is well defined for sufficiently large n. Additionally, we
determine sat(n,D) for some oriented graphs D, and examine some issues
unique to oriented graphs.
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1. INTRODUCTION

Let G = (V, E) be a simple graph with vertex set V and edge set E, having
order n(G) = |V(G)| and size e(G) = |E(G)|. If D = (V, A) is an orientation of
G then its vertex set is the same as that of G and its arc set A is a collection of
orderings on each element in E. We say D is an orientation of G, and G = u(D)
is the underlying graph of D. An oriented graph is an orientation of some simple
graph. For any graph H = (V, E) (digraph F = (V, A)), a subgraph G = (W, E}),
denoted G C H, (subdigraph D = (V}, A1)) is a graph (digraph) with V] a subset
of V and E; a subset of E restricted to the edges among Vi (4, a similar subset
of A). We call the subgraph of H that is isomorphic to G an embedding of G in
H. Note that a subgraph (subdigraph) need not be induced. If e € H¢ we refer to
Hu{e} as H +e. A source in the digraph D is a vertex with no in-neighbors, and
a sink in D is a vertex with no out-neighbors.

For two graphs G and H, the graph H is said to be G-saturated if there is no
subgraph of H isomorphic to G, but for any edge e € H¢, the graph H +e contains a
subgraph isomorphic to G. We define sat(n, G) to be the smallest number of edges
in a G-saturated graph on n vertices, and ez(n,G) to be the greatest number of

*Research supported in part by UCD GK12 project, NSF award # 0742434,

JCMCC 80 (2012), pp. 157-169



edges in a G-saturated graph on n vertices. For any n > n(G) there is & G-saturated
graph H on n vertices, so both sat(n, G) and ez(n, G) are well-defined.

While a number of results have been obtained regarding simple graph saturation,
there has been very little work on oriented graph saturation. In (13, 14], Tuza proves
the following result:

Theorem 1.1. For every digraph F there ezists a constant ¢ = ¢(F) such that, for
every positive integer n, there ezists an F-saturated digraph with n vertices and cn
arcs.

Note that Theorem 1.1 references the class of all digraphs, and does not consider
F-saturated oriented graphs. Similar classes of problems are considered in [2] and
[4). In [6] the authors demonstrate that the minimum number of arcs in an oriented
graph of order n and diameter 2 is bounded between (1 — o(1))nlogn and nlogn —
%n, thereby establishing a lower bound on the number of arcs in an oriented Cs-
saturated oriented graph.

In [8, 9] Pikhurko examines Theorem 1.1 as applied to oriented graphs, in par-
ticular those without cycles, and proves a general asymptotic result. More recently,
the authors of [15] prove a result regarding the greatest number of arcs in an ori-
ented graph not containing a directed path of specified length. We extend this
notion to show the existence of F-saturated oriented graphs for all oriented graphs
F.

For an oriented graph D, let zy denote the arc with initial vertex z and terminal
vertex y. We say z is adjacent to y and y is adjacent from z. If neither xy nor
yz are arcs in D we say that z and y are non-adjacent. For a vertex v € D the
out-degree d*(v) is the number of vertices adjacent from v, the in-degree d~(v) is
the number of vertices adjacent to v, and the underlying degree is the sum of d* (v)
and d~(v). Arc-extremal oriented graphs with forbidden subdigraphs are a natural
extension of edge-extremal graphs with forbidden subgraphs. For oriented graphs
F and D we say that F is D-saturated if D is not a subdigraph of F' but for any
non-adjacent vertices z,y € F D C F + zy, F + yz. Determining the existence of
D-saturated oriented graphs is not as trivial as in the undirected case. To see this,
we need only consider D containing a directed cycle. If F is an acyclic oriented
graph with non-adjacent vertices u,v then an arc can be added between them, to
produce an acyclic superdigraph.

Given a simple graph G and integer n > n(G), the value ex(n, G) has tradition-
ally been defined to be the maximum number of edges in a G-free simple graph on
n vertices. Considering the transitive tournament on n vertices, a strict extension
of this definition to arcs in oriented simple graphs would mean that ez(n, D) = ('2‘)
for any oriented graph with directed cycles. This clearly does not reflect the spirit
of the study of extremal graphs and oriented graphs. In order to extend the defini-
tion to something more meaningful, we denote by exz(n, D) the maximum number
of arcs in a D-saturated oriented simple graph on n vertices.
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FIGURE 1. G with edges zy and zz, G’ with edge 'z’ and non-edge
z'y/, and G* with edge z*z* and non-edge z*y*

FIGURE 2. The graph Hg,q

2. EXISTENCE OF SATURATED ORIENTED GRAPHS

Consider an undirected graph G. For z,y € V(G) we call a = zy ¢ E(G) a
non-edge. Define the graph Hg ¢ in the following way:

Let G’ and G* be two copies of the graph G — zy and, for every vertex v €
V(G), label its associated vertices ' € G',v* € G*. Similarly, for every edge
a € E(G) - {a} label the associated edges a’ € G',a* € G*, (see Figure 1).

Let Hg,. be the graph obtained by identifying =’ with y* and «* with ¢’ (see
Figure 2). We will show that the graph Hg,, does not contain a subgraph isomor-
phic to G via induction on the order of G. If D is an oriented graph with arc a
then define Hp , analogously.

Lemma 2.1. Ifv is a cut vertez of a graph G that is not an endpoint of the edge
a, a graph F is a connected subgraph of Hg o of the same order as G, and neither
v’ nor v* are in F, then there is another vertez w € G that is not an endpoint of
the edge a such that neither w’ nor w* are in F and w is not a cut vertex of G.

Proof. Let A, B be components of G — v such that a € A. The component B
contains at least one vertex w that is not a cut vertex of G. Each path from an
endpoint of the edge a to w in G contains v, so if the embedding of F contains
w’ or w* then it must also contain either v’ or v*. If neither +' nor v* are in the
embedding of F, then neither are w’ nor w*, (see Figure 3). ]

Theorem 2.2. If G is a connected graph of order at least two, then for any a €
E(G) there is no subgraph in Hg o isomorphic to G.

Proof. We use induction on the order of the graph G. Note that if G is 3-connected
then the result is immediate, so we may assume that G is not 3-connected. If

159



N

("

-

/ h — A
\&
FIGURE 3. Cut vertices v/, v* and non-cut vertices w’, w* in Hg,o — F

G = K, then Hg, is a pair of isolated vertices. Since the resulting graph is
edgeless, the theorem is true in the case of n(G) = 2. Now assume that the claim
is true for every connected graph with order strictly less than k. That is, if F' is
a connected graph with order strictly less than k then there is no edge f € E(F)
such that F C Hpy.

Let G be a connected graph of order k with at least one edge a = zy such that
G C Hg,,. Note that (G — {a}) = ¢(G) - 1, and e(Hg,a) = 2¢(G) — 2. If every
edge in ¢(G) — {a} appears at most once in the embedding, then we have that
e(G) < ¢(G) - 1. 1t follows that there must be an edge a € E(G — a) such that
both o and a* are in this embedding of G. We now show that there is a vertex
w € G — {z,y} such that neither v’ nor w* is in the embedding of G.

Since & # a we must consider the case where the edges o and a are disjoint and
the case in which they share an endpoint.

Case 1: Say that the edges a and a are disjoint, that is o = vyvs with vy,vp ¢
{z,y}, and hence n(G) > 4. Since both o’ and a* are in this embedding of G,
it follows that v, v}, v],v3 are as well. The embedding of G contains n(G) — 4
other vertices, so at most n(G) — 2 remaining vertices of G appear at least once
in this embedding. So, there are at least two vertices w,z € V(G) such that
none of {w’,z’,w*,z"} are in this embedding of G. Since G is connected and
{z',¥'} = {=*,¥"} is a cut set of Hg,q, at least one of {z/,y'} must be in this
embedding of G. So, at least one of {w, z}, say w, is neither z nor y. So there is a
vertex w € V(G) — {z, y} such that neither w’ nor w* is in the embedding of G.

Case 2: Say that o and a share an endpoint. Assume, without loss of generality,
that v; is adjacent to . Since both &’ and a* are in the embedding of G, the
embedding of G includes both 2’ and z* = 3’. Since both v} and vj are in the
embedding of G then by an argument analogous to the one in the previous case
there is a vertex w € V(G) such that neither w' nor w* are in the embedding of G.
The vertex w is neither z nor y since both x and y are in the embedding of G.

Note that the edge a cannot be incident to both z and y in G—{a} since zy =@
is an edge in G.

So, in both cases, there exists a vertex w € V(G) — {z,y} such that neither
w' nor w* is in the embedding of G. By Lemma (2.1) we can assume that w is
not a cut vertex of G. So, G — w is connected and contains the edge a, and the
embedding of G is also contained in Hg—y,.. The graph G —w € G C Hg_u,a
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and n(G — w) < k, which contradicts our inductive assumption. Therefore, for any
connected graph G and edge a € E(G) there is no subgraph of Hg,, isomorphic to
G. O

Let D be an oriented graph. We want to show that there is some integer Np
such that for every n > Np there is an oriented graph F on n vertices that is
D-saturated.

Fact 2.3. If there is an oriented graph H on n vertices with non-adjacent vertices
z and y without a subdigraph isomorphic to D, but D is a subdigraph of both H+zy
and H + yz, then every tournament containing H also contains D. So, there is an
oriented supergraph of H on the vertices of H that is D-saturated.

Theorem 2.4. For every oriented graph D there is some integer Np such that for
everyn > Np there is an oriented graph H on n vertices not containing a subdigraph
isomorphic to D such that for any pair of non-adjacent vertices z,y € V(H) both
H + zy and H + yz contain subdigraphs isomorphic to D.

Proof. First consider the case where u(D) is connected. Let Np = 2n(D) — 2, say
a € A(D), and let Hp 4 be the oriented graph as defined above. For n > 2n(D) -2,
define H to be the graph Hp ,U K,_n,. By Theorem 2.2, u(D) is not a subgraph
of u(Hp,g), and hence D is not a subdigraph of H. However, the addition of either
the arc zy or the arc yz creates a copy of D. By Fact 2.3, there is a D-saturated
oriented graph on the n vertices of H.

If u(D) is not connected then let J be the component of D with greatest order.
Let a be an arc in J and let H = H;, U (D - J). Since H;, does not contain
a copy of J, the digraph H does not contain a copy of D. As above, since the
addition of either the arc zy or the arc yz creates a copy of D, by Fact 2.3 there is
a D saturated oriented graph on the n vertices of H. a

Therefore, given any oriented graph D and integer n > 2n(D) — 2, the values
sat(n, D), ez(n, D) are well-defined. See Section 5 for further discussion of the
values of n for which sat is defined.

3. RESULTsS

For each integer m > 1 define P-,',, to be the directed path on m vertices.

Proposition 3.1. sat(n,P3) =n—1

Proof. The lower bound is achieved by orienting all edges of K3 ,—; into the center
vertex. In any oriented graph D containing fewer than n — 1 arcs, the underlying
graph is not connected. It is easy to see that at least two components must be
oriented trees, say A; and A, which each contain a source and a sink. Any arc
from a source in A; to a sink in A; would show that the oriented graph is not
Pi-saturated.

]

161



AAAK

FIGURE 4. A Pi-saturated oriented graph

Proposition 3.2. (1)

" if 3
I N
@
. n if 3|n
sat(n,Ps)<{ n+2 ifn=1 (mod3)
n+d4 fn=2 (mod3)
3)

. n if 3|n
sat(n,Ps) <{ n+2 ifn=1 (mod3)
n+5 ifn=2 (mod3)

Proof. To see the upper bounds, consider the oriented graph composed of disjoint
directed 3-cycles and possibly the following, depending on modularity:

(1) An isolated vertex or B, for sat(n, Pj)

(2) One or two copies of Ky, each strongly oriented, for sat(n, Ps), (see Figure
4)

(3) A strongly oriented K4 or Ks for sat(n, F-’;;)

For the sharpness of sat(n, P;) we consider two cases. If 34 and D is a Py-free
oriented graph on n vertices with fewer than n — 1 arcs, then as noted in the proof
of Theorem 3.1, D has at least 2 components that are oriented trees. Each contains
a source and a sink, and an additional arc from the source of one to the sink of
another will not create a }5:4. If3nand Disa E-free oriented graph that has fewer
than n arcs, then the components of D are either directed cycles of length three
or oriented trees. Since D contains at most n — 1 arcs, there must be at least one
component that is an oriented tree, and if only one such component exists then it
cannot be an isolate since 3 | n. If every source is adjacent to every sink, then the
component is a star with all arcs oriented to the center or all arcs oriented from
the center, which is not P;-saturated. Otherwise, an arc added from a source to a
sink does not result in a P;. Therefore, D is not P,-saturated, and sat(n, }5;) is as
stated.

(]

We now determine the exact value for the saturation number of an oriented star.
Let K (a,5) be the directed star with in-degree b and out-degree a.
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Theorem 3.3. Ifa > b, then for n sufficiently large, sat(n, Ky @p) = (*7271) +
(@a-1)(n—-a+b+1). Ifa < b, then for n sufficiently large, sat(n, Ky (o)) =
CEN+@b-1)(n-b+a+1).

Proof. Refer to the directed star Ky o) 85 K, and assume that a > b. Say D is an
oriented graph on n vertices that is K-saturated. For any pair u, v of non-adjacent
vertices we require that D +uv and D+ vu both contain a copy of K. The only 2 of
the 4 possible combinations that don't result in D already containing K are when
either both u and v are centers of a Kj (q-1,6) or both are centers of a Kj (5 4-1).
Therefore, the vertices of D can be partitioned into sets T and B, where T induces
a tournament and the vertices of B have minimum out-degree at least a — 1 and
minimum underlying degree at least a + b — 1 in D. Let B’ be the oriented graph
induced by B. Let k = |T'|. If 0 < k < (@ — b— 1) the minimum out-degree of a
vertex in B’ is (a — 1 - k). If (a — b) £ k < (a — 1) then the minimum underlying
degree of a vertex in B’ is at least (a+b—1— k) in order that every vertex in B has
underlying degree at least (a+b—1). If k is greater than a then D contains at least
the tournament T of order k& and arcs between all vertices of T and all remaining
{(n — k) vertices of D. Therefore, the fewest possible arcs in a K-saturated oriented
graph with underlying clique size & is bounded below by the function

{ () +(r-ka-1) ifk<(a-b-1)
ek)=4 Llk(n-1)+(n-k)a+b-1)] if(a-b)<k<a)
(5)+kn-k) ifk>a

For n sufficiently large, this function has as its global minimum e(a — b - 1).
Let D’ be the oriented graph consisting of a transitive tournament T on (a —b—1)
vertices, an oriented graph B on (n — k) vertices in which every vertex has both
out-degree and in-degree equal to b, and an arc from every vertex in B to every
vertex in T. The oriented graph D’ is K-saturated and contains precisely e(a—b—1)

arcs. Therefore, sat(n, K1, ap) =e(a—b-1)= (2" +(a-1)(n —a+b+1).
Similarly, if b > a then sat(n, K1,ap) = 27+ (b -1)(n-b+a+1). O

Note that Theorem 3.3 only holds for orientations of the star in which the out-
degree of the center vertex differs from its in-degree. If they are the same then we
obtain a different result.

Theorem 3.4. Let a > 0 be an integer. Then, for n sufficiently large
sat(n, Ky (a,0)) = a{n - 1).

Proof. Refer to the directed star K; (q,0) 88 K. Consider an (a — 1,a — 1)-regular
oriented graph D on n — 1 vertices, joined from a single vertex v, (see Figure 5).
Every vertex other than v has degree (a — 1,¢), and any new arc must be from
one of these to another. So, D is K (a,0)-Saturated. Now let F be a Kj (4 q)-
saturated oriented graph on n vertices. Every vertex in F' has underlying degree
at least (2a — 1). The vertices of F can be partitioned into sets By, in which
every vertex has out-degre at least a, and Bo = F — B;. Note that there is an
arc between every vertex in B; and every vertex in Bs, since the addition of an
arc from B; to B; cannot create a copy of K. Without loss of generality, we
can assume that |[Bz| = j < §. If j = O then every vertex in F has out-degree
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FIGURE 5. A K (3 3)-saturated oriented graph

at least a and so at least one also has in-degree at least k. Therefore, K C D.
Thus, we may assume j > 1. Each vertex in By has underlying degree at least
|Bi] = (n — j). Therefore, the number of edgw in F is bounded below by the
function f(5) = §[i(n - ) + (n - 5)(2a - 1)] = -2-(n -)2e-1+j)for1<ji< 3.
For n sufficiently large, this function has a minimum at j = 1. Since f(1) = e(D),
we know that D is the smallest K-saturated oriented graph on n vertices, and hence

sat(n, K1,(a,a)) = f(1) = a(n - 1). 0

We conclude this section with another definition and a familiar construction.

Definition 3.5. Let G, H be graphs and let kg(H) denote the number of subgraphs
of H isomorphic to G. H is strongly G-saturated if for any edge e € H®, the
number kg(H +€) > ke(H).

Note that any G-saturated graph is strongly G-saturated, but the converse is
not necessarily true.

Theorem 3.8. If TT,, is the transitive tournament on m vertices then

sat(n, TTy) = ("‘2‘ 2) +(n-m+2)(m-2).

Proof. Erdés, Hajnal, and Moon [3] showed that sat(n, Km) = ("53%) + (n - m +
2)(m — 2) and that the unique extremal graph is Km_3 V Kn_ms2. Orient the
(m — 2)-clique to obtain TT,,_2 and each arc from the remaining vertices to this
tournament, (see Figure 6). The resulting oriented graph F is TTr,-saturated and
provides an upper bound on sat(n,TT;,). Now let J be a TT;,,-saturated oriented
graph with z,y € J non-adjacent vertices. Since J + zy, J + yz both contain TTy,,
the addition of zy to u(J) creates a new copy of K,,. Therefore, u(J) is strongly
K-saturated. In [1], it is shown that K2 V K, —m+2 is the unique smallest
strongly Kn-saturated graph on n vertices. Therefore, u(J) is Km—2 V Roemez
and J has (™;2) + (n — m + 2)(m — 2) arcs. Therefore,

sat(n, TTy) = (m; 2) +(n—-m+2)(m-2).
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FIGURE 6. A transitive tournament-saturated oriented graph, con-
sisting of a transitive tournament joined from a set of isolated ver-

tices
4. SOME UPPER BOUNDS

We begin our examination of bounds on sat with a definition followed by an
examination of path orientations.

Definition 4.1. An oriented graph D is hamiltonian connected if for any pair z,y
of vertices of D there is a hamiltonian path from z to y and from y to z.

Let k > 7 be an integer. We will now construct a hamiltonian connected oriented
graph of order k. Define the digraph D, with vertices vg,v1,...,vx—1 and arcs
ViVit1, Vivit2, and v;vi43 for all 0 < 4 < (k - 1) with addition modulo k.

Lemma 4.2. The digraph D;. is hamiltoniaen connected.

Proof. We require that for every ordered pair of vertices in Dj. there is a hamiltonian
path from the first to the second. Without loss of generality, we may assume that
the ordered pair is of the form (vo,v;) for some 1 < i < (k—-1). If i = (k-1)
then the path vov; ... vk—; is hamiltonien. If i < (k — 1) is odd then consider the
path vougvy ... Vi—1Vig1Vig42 ... Vk—10103 ... v;. If on the other hand ¢ is even, then
the path vov1vs... Vic1¥41Vig2. . . Vk—1¥204 . . . ¥; Will suffice. Therefore, there is a
hamiltonian path from vy to every other vertex in Dy, and thus Dj, is hamiltonian
connected. o

Because Dy is a hamiltonian connected digraph of order k > 7, so is every
tournament of order k that contains Dy as a subdigraph. Therefore, Lemma 4.2
implies the existence of hamiltonian connected tournaments of all orders at least 7.

Theorem 4.3. Let n > m > 9 be integers. Then, n < sat(n, P-,',,) < (mz_ 2) +2(n—-
m+2).

Proof. First, note that the argument in the proof of Theorem 3.1 applies here as
well, so that no Ppn-saturated oriented graph contains as components a pair of
oriented trees. In fact, a single oriented tree is either P3-saturated, and therefore
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FIGURE 7. A P,-saturated oriented graph

not P,,-saturated, or contains both a source and gink. Joining the source to the
sink does not create a P,,. Therefore, n < sat(n, Py).

For the upper bound consider the following oriented graph H(m,n), seen in
Figure 7. Let T,,—2 be a hamiltonian connected tournament on m — 2 vertices
whose existence is guaranteed by Lemma 4.2, with vertices labelled vg, v, ..., vnm—3.
Add n — m + 1 vertices labelled 79, 71,...7n—m and adjacent from vg. Finally, add
a new vertex u adjacent to vo,To,...Tn—m. The graph H(m,n) is Pp-saturated.
This can be seen by first noticing that the longest path in H(m,n) has order
m — 1, then examining the graph H(m,n) + a for any arc a € H(m,n)°. Let i,j
be integers. If a = ryr; then the path vm—3...vorirj is & Pp. If @ = vr; then
consider the path uvgPo;virj where Py; is a hamiltonian path from vg to v; in Tr,—2.
Alternately, if @ = r;v; then consider r;v;Pjoro, unless ¢ = 0 in which case the path
riv;Pjory is & P.. If a = v;u then let P be the path of order m — 3 obtained from
Py; by removing the vertex vy. Then Pv;uvgrg is a path of order m. Finally, if
a = uv; then the path uv; P,ouprg suffices. Therefore, H(m,n) is P,.-saturated and
n < sat(n, Pp) < ("‘2'2) +2n-m+2).

O

Note that if m is 7 or 8 then sat(n, P,,) is bounded above by :—;n + ¢ where ¢
is a constant depending on n (mod m). This bound is achieved by a construction
similar to that in Theorem 3.2 but composed of disjoint strong tournaments of
order 4 along with zero, one, two, or three strong tournaments of order 5 and, in
the former case, at most one directed 3-cycle.

Theorem 4.4. Let o(P,,) be an orientation of P, with m = 2k, k > 8 and odd.
Then, sat(n,o(Pn)) < (n (mod k))(*3?) +12](5).

Proof. Let r > 1 be an integer. By the rotational tournament ROT5,4; of order
2r +1 we mean the orientation of Ka,41 with vertices {vq,v1,...,v2,} whereby for
all 0 < 7 < 2r, v; is adjacent to vi41, Vg2, . . . , Visr, With addition considered modulo
2r + 1. Consider the oriented graph F' consisting of disjoint rotational tournaments
of order k. Havet and Thomassé [7] showed that every tournament on at least 8
vertices contains every orientation of a hamiltonian path. A rotational tournament
is vertex transitive, and hence any oriented path contained in the tournament can
be said to have as an endpoint any vertex in the tournament. So, each vertex of F
is an end vertex of every orientation of every path of order at most the order of the
component in which the vertex is contained. Thus, the addition of an arc between
vertices of different components will yield every orientation of a path of order m.
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FIGURE 8. No oriented graph on 3 vertices is C3-saturated

FIGURE 9. The addition of either arc vyv,, or arc v,,v; generates
a hamiltonian cycle

The oriented graph F is o(Py,)-saturated and contains (n (mod k))(*3*) + (2] (%)
arcs, and therefore provides the upper bound. [m]

5. THE MINIMUM ORDER OF A D-SATURATED ORIENTED GRAPH

We mentioned in Section 1 that for a simple graph G, the value sat(n,G) is
well-defined for any n > n(G), and that this is not necessarily the case for ori-
ented graphs. Although any tournament not containing the oriented graph D is
by definition D-saturated, we wish to consider for which values of n there is an
oriented non-complete graph F that is D-saturated. Consider the case when D is
a directed cycle on three vertices, denoted C3. There are, up to isomorphism, only
three oriented graphs of order three and size two, (see Figure 8). For each, there
is an arc whose addition creates no Cs. Consequently, no oriented non-complete
graph on 3 vertices is C-saturated. However, the directed cycle on four vertices is

ds-saturated.

This leads naturally to wonder for which n, the value sat(n, D) < (3). Given
an oriented graph D we refer to the smallest n such that sat(n, D) < (3) as Np.
Our construction in section 2 of this paper gives 2n(D) — 2 as an upper bound on
Np.

For the transitive tournament T'T;, on n vertices, the construction used in The-
orem 3.6 demonstrates that Npr, = n.

Every vertex in a strong tournament on k vertices is both the initial and terminal
vertex of directed paths of order k. Therefore, for m > 4 the oriented graph on m
vertices composed of an isolated vertex and a strong tournament on m — 1 vertices
is P,-saturated. A pair of isolated vertices is }sz-satura.ted, and three vertices with
a pair of arcs that share an initial vertex is a Pj-saturated graph. So, N g,=m
for all m > 2.
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Similarly, for m > 3 we can show that NC’,’,. = m. Consider a directed path
¥1,92,...Um On m vertices. Add the arcs vjvm—1 and vnva, (see Figure 9). The
resulting graph does not contain a directed m-cycle, but the addition of either vy vy,
or v, creates one, so by Fact 2.3 there is a C:n-saturated oriented graph on m
vertices.

6. FURTHER DIRECTIONS

Saturated simple graphs have been studied extensively. There has been a
tremendous amount of interest in their structure, beginning with the work of Mantel
[11] and Turén [12] with regard to maximum size and Erdds, Hajnal, and Moon’s
work [3] on saturated graphs of minimum size. While directed graphs have also
received a great deal of attention, the intersection of these two topics has thus far
been very limited in scope, and what attention it has received has been restricted
to orientations of graphs containing multiple edges [4].

A possible reason for this lack of attention to oriented graph saturation is the
lack of assurance that the parameters sat(n, D) and ez(n, D) are well-defined for
all oriented graphs D. We have resolved this issue in Theorem 2.4, and thus have
made oriented graph saturation a viable field of study. We have also seen that the
saturation number of D can be, but is not necessarily, related to the saturation
number of its underlying graph (D). While Bollobds [1] demonstrates that for
integers n > m the unique K,,-saturated graph of size sat(n, Kn) is the smallest
strongly K,-saturated graph on n vertices, this is not necessarily the case for
all graphs in general. Since a D-saturated oriented graph F has the property that
u(F) is strongly u(.D)-saturated, a solution to the following problem will potentially
resolve sat(n, D) for a number of oriented graphs.

Problem 1. For which graphs G is sat(n,G) the fewest number of edges in a
strongly G-saturated graph on n vertices?

Clearly it would be advantageous to determine sat(n, D) for other families of ori-
ented graphs, including non-transitive tournaments, oriented trees, and orientations
of paths. While we have established that n < sat(n, B, < ("'2' 2) +2(n-m+2),
we have no reason to believe that either of these bounds will be met in general.
This is definitely a direction for future work in this area.

Another interesting opportunity for extending oriented graph saturation is the
study of symmetric digraphs.

Definition 6.1. A digraph D is symmetric if for any arc zy in D the arc yz is
also in D. For a simple graph G let s(G) be the symmetric digraph on the vertices
of G in which zy,yz are arcs in s(G) if and only if zy is an edge in G.

For any symmetric digraph F let f(F) = }|A(F)), so that f represents the
number of unique pairs of adjacent vertices. Let D be an oriented graph. If s(G) is
a D-saturated digraph for some graph G then G is u{D)-saturated. The converse
is not necessarily true, as can be seen in Figure 10. The graph H = K,, UK is
K m-saturated, but s(H) is not Ky (m0)-saturated.
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FIGURE 10. The addition of arc zy to s(K4 U K;) does not create a K (4,0)

Extend the definition of sat to symmetric digraphs in the following way. For
an oriented graph D let sat,(n, D) = min{f(F)} over all D-saturated symmetric
digraphs F' on n vertices.

Problem 2. How does sat,(n, D) relate to sat(n, D) and sat(n,u(D))?

It is clear that sat,(n, D) > sat(n,u(D). When is equality achieved?
7. IN MEMORIAM

In memory of Ralph Stanton, a long-time friend to combinatorics and graph
theory.
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