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Abstract

A difference systems of sets (DSS) is a collection of subsets of Z,,
the integers mod n, with the property that each non-zero element of
Zn appears at least once as the difference of elements from different
sets. If there is just one set it is called a principal DSS. DSS arise
naturally in the study of systematic synchronizable codes and are
studied mostly over finite fields when n is a prime power. Using only
triangular numbers mod n we constructed a DSS over Z, for each
positive integer n > 3 . Necessary and sufficient conditions are given
for the existence of a principal DSS using only triangular numbers in
terms of coverings of {1,...,n — 1} by finite arithmetic progressions.

1 Introduction

Finite difference systems of sets (DSS) have applications in synchronizable
coding. The general case was introduced by Levenshtein in 1971 to con-
struct systematic comma-free codes as cosets of linear codes with minimal
redundancy in the presence of errors [10]. D. J. Clague [1] had previously
studied the case for two sets in 1967.

Definition 1 A difference systems of sets (DSS) is a collection of g < n
disjoint subsets Q; C Z,, such that the equation

m = a-b (modn) (1)
has at least one solution in integers a,b from Z, foreachm=1,...n~1
where a € Q;,b € Q;,i # 5.

A DSS is perfect with index p if every m appears as a difference of
elements from different sets exactly p times. A DSS is regular if all sets

JCMCC 80 (2012), pp. 193-198



are the same size. The redundancy, r, of a DSS is the number of elements
used; i.e., |U?__fg Q;|. A single subset Qo with the property that all non-zero
elements of Z,, can be written as differences of elements from @y is called
a principal DSS, or if no confusion is possible,

Any DSS, U?;J Q: is itself a principal difference set in Z,. A (v,k,A)
cyclic difference set, D, is a subset of k¥ elements of Z,, such that every
non-zero element of Z,, can be written in exactly A different ways as a
difference a — b of elements in D. If Qo,...,Qq—1 is a DSS then UQ; is a
difference set, but not necessarily a (v, k, A) difference set as examples show
[2]. As well the same reference gives an example of a DSS that is neither
regular or perfect but UQ; — {0} is a (11,5, 2) perfect difference set. DSS
are often constructed by clever partitioning of known (v, k, A) difference sets
where the set elements are from finite fields. Accordingly, one can view the
study of DSS as a special case of the more general study of difference sets,
but the properties of regularity and perfection which are usually assumed
in the study of (v, k, ) difference sets are not necessarily assumed when we
consider difference sets generally. The case when the underlying difference
set is a (v, k, A) difference set has been studied extensively by a number of
authors [5, 6, 4, 12, 13].

2 Using Triangular Numbers

The well-known triangular numbers are positive integers that may be de-
fined in several different ways. Perhaps the most common is:

Tn=1+2+---+n=(";rl )

where n > 0. For notational convenience we take zero as a triangular
number and define Ty = 0. An equivalent recursive definition which is

useful for our purposes is

T.=Ti—1 44, i>0.

We illustrate the use of triangular numbers by constructing a principal
DSS in the following theorem.

Theorem 1 Ifn > 3 Then there exists a principal DSS in Z,, with redun-
dancy | 3].

Proof: If n is odd let n = 2k + 1,n > 0. We claim the following differ-
ences of triangular numbers and their negatives
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1=T—-To,..., k=T - T41,-1=T~-T4,...,-k=T 1 =T}

taken mod n lists all integers 1,...,m — 1 mod n. Clearly, 1,...,k are
distinct mod n and therefore so are -1=n-1,...,-k=n — k. If i from
the first of the list represents the same class as —; in the second half of
the list then i 4+ j = 0 mod n. Z, is an additive Abelian group and the
inverse mapping is injective. Therefore, there are 2k non-zero integers in
the list as required since n = 2k + 1. Further note that n — k = k + 1 since
n=2k+1.

If n is even let n = 2k,k > 0. Then the above list of differences still
yields all integers 1,...,n —1 mod n but in this case n — 1 is odd and there
is one duplication: k = Ty — Tx—, and —k = Tj_; — T}, are representatives
of the same class since n = 2k.

The following difference matrix of consisting of the first three triangular
numbers is a perfect principal DSS with index 2 that covers {1,2,3} over
Z4:

W= O
NO W
QO N =

and illustrates the even case of Theorem 1. The matrix repeats each non-
zero class exactly twice and therefore has index 2 over Z;.

3 Coverings by Arithmetic Progressions

An arithmetic progression (AP) is a sequence of integers in which the dif-
ference of successive terms is constant. Studying the difference matrix
determined by a collection of disjoint sets Qo,...,Qq—1 of Z, can help
determine whether they form a DSS.

It what follows we say that an integer a in Z covers a class mod n
represented by an integer b if b = a mod n. Further, a set of integers
A C Z cover a set of classes B in Z, if for each b in some class of B there
exists a € A such that a = b mod n.
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Theorem 2 Let n > 3 and v =|3]. The set of the first r + 1 triangular
numbers {Tp, -+, T,} determine a principal DDS in Z, if and only if the
2(r — 1) integers (not necessarily distinct) appearing in the arithmetical
progressions determined by +(T; + ki), 0< k<r -1, cover {1,...n -1}
n Zn.

Proof: Let D = D(r) denote the (r + 1) x (r + 1) integer difference
matrix determined by the ordered set of the first » + 1 triangular numbers
starting with Tp = 0:

— | To T .- T; e T,
__ 30+l ey _r(r+l
Ty | 0 e ee £ ]
75 0
A G I (i=3)(+i+1)
T, [ % . :
Tr rSr;-l! .. jr—l!!22r—t+12 : 0

where it is assumed for notational convenience that i < j. The general
term follows easily from the definition of triangular numbers and is easily
adjusted if i > j. D is a skew-symmetric integer matrix with a main
diagonal of all 0’s.

If 0 < ¢ < r let D; denote the set of » — i + 1 subdiagonal entries:

T'i)fri-l-l - Tl’ cee 1Tr - Tr—i-
Referring to the above difference matrix, D; is illustrated and is seen to be
the integer sequence

G+1) (r=1)(2r—i+1)
D) [ } D) .

Clearly D; is the sequence 1,2,...,7 and D is the single number T;.. If
these integers are taken as representatives of classes in Z,, then, by an abuse
of notation, we can write D_; = -D; = {n-1,...,n—1}.
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We claim that D; is an AP because the difference of any two successive
terms in D; is constant:

(Tivk = T) — (Tipk-1) = (6 + k) —k=4d, O<k<r—i+l

It follows immediately that D_; is also an AP. Therefore, each non-zero
difference in D must appear in at least one of the +D;. Thus, if the set
of the first r + 1 triangular numbers {To, - --, T} } is a principal DDS in Z,
then, by definition, the integers {1,...n—1} are covered by the integer sets
D;u-D;, 0<i<r.

Conversely, if the r(r — 1) non-zero integers in |J](D; U —D;) cover
{1,...n — 1} then each distinct non-zero class in Z, is a difference of ele-
ments of the set of the first » + 1 triangular numbers {Tp, -+, T;}.

In 1990 Heath (7] proved that covering a finite set in Z with AP’s is
NP-complete but that doesn’t preclude exact solutions in particular cases.
Any extension of Theorem 2 to more than one set must take account of the
structure of the partitions determined by the sets of triangular numbers. An
open question is determining whether any DSS using triangular numbers
with more than one set can have minimal redundancy.
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