# Rainbow Cycles in Cube Graphs

Jens-P. Bode, Arnfried Kemnitz, and Sebastian Struckmann

Computational Mathematics
Technische Universität Braunschweig
38023 Braunschweig, Germany
jp.bode@tu-bs.de, a.kemnitz@tu-bs.de, s.struckmann@tu-bs.de

## Dedicated to Ralph G. Stanton

ABSTRACT. A graph G is called rainbow with respect to an edge coloring if no two edges of G have the same color. Given a host graph H and a guest graph  $G \subseteq H$ , an edge coloring of H is called G-anti-Ramsey if no subgraph of H isomorphic to G is rainbow. The anti-Ramsey number f(H,G) is the maximum number of colors for which there is a G-anti-Ramsey edge coloring of H. In this note we consider cube graphs  $Q_n$  as host graphs and cycles  $C_k$  as guest graphs. We prove some general bounds for  $f(Q_n, C_k)$  and give the exact values for  $n \leq 4$ .

#### 1. Introduction

A graph G is called rainbow with respect to an edge coloring if no two edges of G have the same color, that is, the edges of G are totally multicolored. Given a host graph H and a guest graph  $G \subseteq H$ , an edge coloring of H is called G-anti-Ramsey if no subgraph of H isomorphic to G is rainbow. The anti-Ramsey number f(H,G) is the maximum number of colors for which there is a G-anti-Ramsey edge coloring of H. Equivalently, any edge coloring of H with at least  $\mathrm{rb}(H,G)=f(H,G)+1$  colors contains a rainbow copy of G. This number  $\mathrm{rb}(H,G)$  is called rainbow number of G with respect to H.

The function f(H,G) was introduced by Erdős, Simonovits, and Sos [6]. In many of the papers on this function complete host graphs  $H \cong K_n$  are considered. The function  $f(K_n,G)$  is completely determined for, e.g., complete graphs [4, 10], cycles [6, 10], and matchings [5] as guest graphs. There are partial results if G is complete bipartite or a tree, for example. There are also some results for complete bipartite host graphs H (see, i.e., [2, 9]).

In this note we consider cube graphs  $Q_n$  as host graphs. The cube graph  $Q_n$  has  $2^n$  vertices to which all (0,1)-sequences of length n are assigned and two vertices are adjacent if and only if the assigned sequences differ in exactly one position. All  $2^{n-1}$  edges for which the assigned sequences differ in the same position determine one of the n parallel classes of edges.

In the case that also the guest graphs are cube graphs  $Q_k$  then partial results on  $f(Q_n, Q_k)$  can be found in [1, 3]. Here we consider guest graphs  $C_k$  in host graphs  $Q_n$  where k has to be even since odd cycles are no subgraphs of cube graphs.

## 2. General Results

At first we determine some general lower bounds for  $f(Q_n, C_k)$  by giving constructions for colorings of  $Q_n$  without any rainbow copy of  $C_k$ .

Theorem 1: If  $n \geq 3$  then

$$f(Q_n, C_k) \ge (s-1)2^{n-1} + n - s + 1$$

where  $s = \lceil \log_2 k \rceil$ .

**Proof:** Color all edges of the parallel classes in which the assigned sequences of the vertices differ at position i,  $1 \le i \le n-s+1$ , with color i. All  $(s-1)2^{n-1}$  edges of the remaining s-1 parallel classes obtain pairwise different colors greater then n-s+1 implying that the total number of colors of this coloring is  $(s-1)2^{n-1}+n-s+1$ .

Since any cycle contains an even number of edges of each parallel class, rainbow cycles in  $Q_n$  cannot contain an edge of a color  $1, 2, \ldots, n-s+1$ .

The components of the subgraph of  $Q_n$  induced by the edges of the remaining colors are cube graphs  $Q_{n-(n-s+1)} \cong Q_{s-1}$ . Since the order of  $Q_{s-1}$  is  $2^{s-1} = 2^{\lceil \log_2 k \rceil - 1} < k$ , the components  $Q_{s-1}$  cannot contain cycles  $C_k$  as subgraphs, and therefore there is no rainbow  $C_k$  in  $Q_n$ .

In the next theorem the lower bound for  $f(Q_n, C_k)$  depends on  $t(Q_n, C_k)$ , where the vertex Turán number t(H, G) is defined as the minimum number of vertices which have to be removed from H such that the remaining graph does not contain a copy of G as subgraph.

Theorem 2: It holds

$$f(Q_n, C_k) \ge n2^{n-1} - (n-1)t(Q_n, C_k).$$

**Proof.** Let T be a set of  $t(Q_n, C_k)$  vertices such that each copy of  $C_k$  in  $Q_n$  contains a vertex of T. We start with a coloring of the edges of  $Q_n$  with pairwise different colors, that is, with  $n2^{n-1}$  colors. Then we recolor a minimum number of edges of this coloring such that at the end each vertex of T is incident to equally colored edges. This can be achieved by recoloring at most n-1 of the incident edges for each vertex of T.

We provide an upper bound for  $t(Q_n, C_k)$ .

#### Lemma 1: It holds

$$t(Q_n, C_k) \le 2^{n-1} - \frac{k}{2} + 1.$$

**Proof.** Since  $Q_n$  is bipartite any cycle  $C_k$  contains k/2 vertices of each partition set. The cardinality of each partition set is  $2^{n-1}$ . The removal of  $2^{n-1} - k/2 + 1$  vertices of one partition set results in a subgraph with less than k/2 vertices in this partition set and therefore without a cycle  $C_k$ .  $\Box$ 

Combining Theorem 2 and Lemma 1 gives

Corollary 1: It holds

$$f(Q_n, C_k) \ge 2^{n-1} + \frac{1}{2}(n-1)(k-2).$$

Analogously to the vertex Turán number the edge Turán number t'(H,G) is defined as the minimum number of edges which have to be removed from H such that the remaining graph does not contain a copy of G as subgraph.

Theorem 3: It holds

$$f(H,G) \le q(H) - t'(H,G)$$

where q(H) is the size of H.

**Proof.** Let c be an edge coloring of H with f(H,G) colors such that there is no rainbow copy of G. Define T' to be a set of all edges of H reduced by one edge of each of the f(H,G) colors. Thus, |T'| = q(H) - f(H,G). If the edges of T' are removed from H then the remaining graph has edges of pairwise different colors and therefore does not contain a copy of G since otherwise this copy would be rainbow, contradicting the definition of the coloring c. This implies  $t'(H,G) \leq |T'|$  which completes the proof.

In the following we summarize some properties of cube graphs.

## Propositions:

- 1. Cube graphs  $Q_n$  are bipartite with partition sets of, say, black and white vertices.
- 2.  $Q_n$  is hamiltonian for  $n \geq 2$ .
- 3. In  $Q_n$  there exists a hamiltonian path between any pair of a black and a white vertex (see [8, Lemma 1]).

The following result proves that a cube graph  $Q_n$  remains hamiltonian after removing any n-2 edges.

Lemma 2 [7]: It holds

$$t'(Q_n, C_{2^n}) = n - 1.$$

**Proof.** Removing n-1 edges from  $Q_n$  incident to the same vertex results in a non-hamiltonian graph, that is, in a graph without a subgraph  $C_{2n}$ .

Now consider a graph obtained by removing any n-2 edges from  $Q_n$ . Let  $r, 1 \le r \le n-2$ , be the number of different parallel classes to which the removed edges belong. Therefore, at most n-2-(r-1)=n-r-1 edges belong to the same parallel class. The removal of all the edges of these r parallel classes results in  $2^r$  disjoint subcubes  $Q_{n-r}$ . Contraction of the vertices of each of these  $Q_{n-r}$ s in  $Q_n$  to a single vertex yields a  $Q_r$ .

In the case  $r \geq 2$  choose a hamiltonian cycle C, which exists in  $Q_r$  by Proposition 2, and an arbitrary orientation of C. For each oriented edge uv of C consider the two copies Q and Q' of  $Q_{n-r}$  corresponding to u and v, respectively. There are  $2^{n-r}$  parallel edges between Q and Q' and therefore  $2^{n-r-1}$  edges from the black vertices of Q to the white vertices of Q' in  $Q_n$ . There remains at least one of these edges after the removal of the n-2 edges of  $Q_n$  since  $n-r-1 < 2^{n-r-1}$ . For each oriented edge of C choose one of those remaining edges of  $Q_n$ . Therefore, in each  $Q_{n-r}$  there exists a black vertex and a white vertex incident to such a chosen edge. Since there exists a hamiltonian path between these pairs of black and white vertices in each  $Q_{n-r}$  according to Proposition 3, there is a hamiltonian cycle in  $Q_n$ .

In the case r=1 we obtain just two subcubes  $Q\cong Q'\cong Q_{n-1}$  by the removal of the corresponding parallel class. Note that, by the same argument as before, there is one edge from a white vertex of Q to a black vertex of Q', and vice versa. These edges together with the corresponding hamiltonian paths in Q and Q' form a hamiltonian cycle in  $Q_n$ .

Using the preceding lemma we can solve the "hamiltonian case"  $k=2^n$  completely.

Corollary 2. It holds

$$f(Q_n, C_{2^n}) = n2^{n-1} - n + 1.$$

**Proof.** Theorem 3 and Lemma 2 imply that  $f(Q_n, C_{2^n}) \leq n2^{n-1} - (n-1)$  since  $q(Q_n) = n2^{n-1}$ . Coloring all edges incident to the same vertex with one color and all other edges with additional pairwise distinct colors proves the lower bound.

# 3. Exact results for small cube graphs $Q_n$

The cube graph  $Q_1$  does not contain a cycle, and  $Q_2$  as host graph is completely solved by Corollary 2:  $f(Q_2, C_4) = 3$ . The following theorem covers the case n = 3.

## Theorem 4: It holds

$$f(Q_3, C_4) = 8$$
,  $f(Q_3, C_6) = 9$ , and  $f(Q_3, C_8) = 10$ .

**Proof.** The value of  $f(Q_3, C_8)$  is determined in Corollary 2 and that of  $f(Q_3, C_4)$  in [1, Theorem 3] (note that  $C_4 \cong Q_2$ ).

Theorem 1 proves  $f(Q_3, C_6) \ge 9$ .

We prove equality by showing that each coloring of  $Q_3$  with 10 colors contains a rainbow cycle  $C_6$ .

Consider an arbitrary set of i + 1 edges of  $Q_3$  and count the cycles  $C_6$  containing at least two of these edges. The maximum number of  $C_6$ s over all (i + 1)-sets is denoted by g(i).

To determine upper bounds for g(1) and g(2) observe that there are 16 distinct copies of  $C_6$  in in  $Q_3$ . Since  $Q_3$  has 12 edges there are  $16 \cdot 6/12 = 8$  copies of  $C_6$  that contain a certain edge implying  $g(1) \leq g(2) \leq 8$ . Since for any pair of edges there exists a  $C_6$  containing just one of these edges, it follows g(1) < 8.

An edge coloring of  $Q_3$  with 10 colors contains either two pairs of equally colored edges or a triple of edges of the same color. Therefore, the number of non-rainbow copies of  $C_6$  is at most g(1) + g(1) < 16 or g(2) < 16, respectively, that is, in both cases there remains at least one rainbow copy in  $Q_3$ .

Note that, considering the indices of g(i) in the preceding proof, 1+1 and 2 are all possible partitions of 12-10 where 12 is the number of edges of  $Q_3$  and 10 the number of colors. This idea will also be used in the following determination of  $f(Q_4, C_k)$ .

### Theorem 5: It holds

$$f(Q_4, C_4) = 18$$
,  $f(Q_4, C_6) = 20$ ,  $f(Q_4, C_8) = 21$ ,  $f(Q_4, C_{10}) = 25$ ,  $f(Q_4, C_{12}) = 25$ ,  $f(Q_4, C_{14}) = 26$ , and  $f(Q_4, C_{16}) = 29$ .

**Proof:** The value of  $f(Q_4, C_k)$  for k = 4 is determined in [1, Theorem 4] and for k = 16 in Corollary 2.

In the remaining cases we first prove lower bounds for  $f(Q_4, C_k)$ .

In the case k=6 deletion of the four white vertices in Figure 1, which implies deletion of all double-line edges, too, results in a graph without a cycle  $C_6$  implying  $t(Q_4, C_6) \leq 4$ . Therefore,  $f(Q_4, C_6) \geq 20$  by Theorem 2.

For k=8 color all double-line edges in Figure 2 with one color and all the other edges with additional pairwise distinct colors. This coloring uses 21 colors. Removal of the 12 double-line edges results in a graph with two components not containing a cycle  $C_8$ . Therefore, any  $C_8$  in  $Q_4$  contains two of the double-line edges and thus is not rainbow.





Figure 1:  $f(Q_4, C_6) \ge 20$ .

Figure 2:  $f(Q_4, C_8) \ge 21$ .

For k = 10 and k = 12 we have  $f(Q_4, C_k) \ge 25$  by Theorem 1, and Corollary 1 gives  $f(Q_4, C_{14}) \ge 26$ .

To prove the corresponding upper bounds we generalize the method of the proof of Theorem 4.

Extending the definition of g(i) we consider an edge coloring of  $Q_4$  containing  $i_j + 1$  edges of color j for j = 1, ..., t and all other edges of additional pairwise distinct color. This coloring uses  $32 - (i_1 + i_2 + ... + i_t)$  colors. The maximum number of non-rainbow  $C_k$ s over all such colorings is denoted by  $g(i_1, i_2, ..., i_t)$ .

To prove  $f(Q_4, C_k) < z$  it suffices to show that  $g(i_1, i_2, \ldots, i_t)$  is smaller than the number of copies of  $C_k$  in  $Q_4$  for all partitions  $(i_1, i_2, \ldots, i_t)$  with  $i_1 + i_2 + \ldots + i_t = 32 - z$ .

Using the fact that  $g(i_1, \ldots, i_t) \leq g(i_1, \ldots, i_r) + g(i_{r+1}, \ldots, i_t)$  reduces the number of cases to be considered. Note that the order of arguments in function g is not important.

We used a computer to establish the respective upper bounds.

## 4. Concluding remarks

Applying the results of Theorem 1 and Corollary 2 yields the lower bounds for  $f(Q_5, C_k)$  in Table 1.

Table 1: Lower bounds for  $f(Q_5, C_k)$ .

Note that Corollary 2 proves  $f(Q_5, C_{32}) = 76$  and that  $f(Q_5, C_4) = 43$  (see [3, Theorem 1]).

The following result provides a general upper bound for f(H, G).

**Theorem 6:** Let F, G, and H be graphs with  $G \subseteq F \subseteq H$ . Then

$$f(H,G) \le f(H,F) + f(F,G) - q(F) + 1.$$

**Proof:** An edge coloring of H with f(H,F)+1 colors assures the existence of a rainbow copy of F in H, that is, this copy has q(F) colors. Reducing the number of colors in H by q(F)-f(F,G)-1 results in a coloring of H using f(H,F)-q(F)+f(F,G)+2 colors with a copy of F in H using at least f(F,G)+1 colors. Thus, there exists a rainbow copy of G in F and therefore also in H. This proves that in any edge coloring of H with f(H,F)+f(F,G)-q(F)+2 colors there is a rainbow copy of G.

Setting  $H \cong Q_5$ ,  $G \cong C_k$ , and  $F \cong Q_3$ ,  $Q_4$  gives the upper bounds in Table 2. Note that  $f(Q_5, Q_3) = 68$  (see [3]) and  $f(Q_5, Q_4) = 76$  (see [1]).

Table 2: Upper bounds for  $f(Q_5, C_k)$ .

### References

- [1] M. Axenovich, H. Harborth, A. Kemnitz, M. Möller, I. Schiermeyer: Rainbows in the hypercube. Graphs Combin. 23 (2007), 123–133.
- [2] M. Axenovich, T. Jiang: Anti-Ramsey numbers for small complete bipartite graphs. Ars Combin. 73 (2004), 311–318.
- [3] J.-P. Bode, D. Grimm, A. Kemnitz: Hypercube-anti-Ramsey numbers of  $Q_5$ . Ars Combin. (to appear).
- [4] G. Chartrand, P. Zhang: Chromatic Graph Theory. Boca Raton, FL, USA: CRC Press, 2008.
- [5] H. Chen, X. Li, J. Tu: Complete solution for the rainbow numbers of matchings. Discrete Math. 309 (2009), 3370-3380.
- [6] P. Erdős, M. Simonovits, V.T. Sós: Anti-Ramsey theorems. In: Infinite and finite Sets (Keszthely, Hungary, 1973), Colloq. Math. Soc. Janos Bolyai 10 (1975), 633-643.
- [7] H. Harborth: Private communication.
- [8] H. Harborth and A. Kemnitz: Hamiltonicity in vertex-deleted hypercubes. Congr. Numer. 195 (2009), 33-47.
- [9] T. Jiang: Edge-colorings with no large polychromatic stars. Graphs Combin. 18 (2002), 303-308.
- [10] I. Schiermeyer: Rainbow numbers for matchings and complete graphs. Discrete Math. 286 (2004), 157-162.