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ABSTRACT. A graph G is called rainbow with respect to an edge color-
ing if no two edges of G have the same color. Given a host graph H and
a guest graph G C H, an edge coloring of H is called G-anti-Ramsey
if no subgraph of H isomorphic to G is rainbow. The anti-Ramsey
number f(H,G) is the maximum number of colors for which there is
a G-anti-Ramsey edge coloring of H. In this note we consider cube
graphs Q. as host graphs and cycles Ci as guest graphs. We prove
some general bounds for f(Q., Cx) and give the exact values for n < 4.

1. Introduction

A graph G is called rainbow with respect to an edge coloring if no two edges
of G have the same color, that is, the edges of G are totally multicolored.
Given a host graph H and a guest graph G C H, an edge coloring of H
is called G-anti-Ramsey if no subgraph of H isomorphic to G is rainbow.
The anti-Ramsey number f(H,G) is the maximum number of colors for
which there is a G-anti-Ramsey edge coloring of H. Equivalently, any
edge coloring of H with at least rb(H,G) = f(H,G) + 1 colors contains a
rainbow copy of G. This number rb(H, G) is called rainbow number of G
with respect to H.

The function f(H,G) was introduced by Erdés, Simonovits, and Sos
[6]. In many of the papers on this function complete host graphs H = K,
are considered. The function f(K,,G) is completely determined for, e.g.,
complete graphs [4, 10}, cycles [6, 10], and matchings [5] as guest graphs.
There are partial results if G is complete bipartite or a tree, for example.
There are also some results for complete bipartite host graphs H (see, i.e.,
2, 9)).

In this note we consider cube graphs Q,, as host graphs. The cube graph
Qn has 2" vertices to which all (0,1)-sequences of length n are assigned
and two vertices are adjacent if and only if the assigned sequences differ in
exactly one position. All 2"~ edges for which the assigned sequences differ
in the same position determine one of the n parallel classes of edges.
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In the case that also the guest graphs are cube graphs Q. then partial
results on f(Qn, Qx) can be found in [1, 3]. Here we consider guest graphs
Ck in host graphs Q, where k has to be even since odd cycles are no
subgraphs of cube graphs.

2. General Results

At first we determine some general lower bounds for f(Qn,Ck) by giving
constructions for colorings of Q, without any rainbow copy of Cy.

Theorem 1: If n > 3 then
f(@QnCr) 2 (s—1)2" 1 +n—s+1

where s = [log, k.

Proof: Color all edges of the parallel classes in which the assigned se-
quences of the vertices differ at position ¢, 1 < i < n.— s+ 1, with color 3.
All (s —1)27~ edges of the remaining s — 1 parallel classes obtain pairwise
different colors greater then n — s + 1 implying that the total number of
colors of this coloring is (s —1)2"~!+n — s+ 1.

Since any cycle contains an even number of edges of each parallel class,
rainbow cycles in Q,, cannot contain an edge of a color 1,2,...,n —s+ 1.

The components of the subgraph of Q, induced by the edges of the
remaining colors are cube graphs Qn_(n—s+1) = Qs-1. Since the order of
Qs is 291 = 2Mo82¥1-1 <« [k the components Q,—; cannot contain cycles
C} as subgraphs, and therefore there is no rainbow Cy in Q. o

In the next theorem the lower bound for f(Qy,Cx) depends on t(Qn, Ck),
where the vertex Turdn number t(H, G) is defined as the minimum number
of vertices which have to be removed from H such that the remaining graph
does not contain a copy of G as subgraph.

Theorem 2: It holds
f(Qn,Ci) 2 12" — (n — 1)t(Qn, Ck).

Proof. Let T be a set of t(Qn, Ck) vertices such that each copy of Ci in
Qn contains a vertex of . We start with a coloring of the edges of Qn
with pairwise different colors, that is, with n2"~! colors. Then we recolor a
minimum number of edges of this coloring such that at the end each vertex
of T is incident to equally colored edges. This can be achieved by recoloring
at most n — 1 of the incident edges for each vertex of T o

We provide an upper bound for ¢{(Qn, Ck).
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Lemma 1: It holds

k

t(Qn,Cr) <271 — 5+ 1.

Proof. Since Q, is bipartite any cycle Cj contains k/2 vertices of each
partition set. The cardinality of each partition set is 2*~1. The removal of
27—! _ k/2 41 vertices of one partition set results in a subgraph with less
than k/2 vertices in this partition set and therefore without a cycle Ci. g

Combining Theorem 2 and Lemma. 1 gives

Corollary 1: It holds

F(Qn,Cr) 22"t + %(n ~1)(k—-2).

Analogously to the vertex Turén number the edge Turdn number t'(H,G)
is defined as the minimum number of edges which have to be removed from
H such that the remaining graph does not contain a copy of G as subgraph.

Theorem 3: It holds
f(H,G) < q(H)-t'(H,G)

where g(H) is the size of H.

Proof. Let ¢ be an edge coloring of H with f(H,G) colors such that there
is no rainbow copy of G. Define T” to be a set of all edges of H reduced
by one edge of each of the f(H,G) colors. Thus, |T’| = ¢(H) — f(H,G). If
the edges of T” are removed from H then the remaining graph has edges of
pairwise different colors and therefore does not contain a copy of G since
otherwise this copy would be rainbow, contradicting the definition of the
coloring ¢. This implies t'(H, G) < |T/| which completes the proof. o

In the following we summarize some properties of cube graphs.
Propositions:

1. Cube graphs @, are bipartite with partition sets of, say, black and
white vertices.

2. @, is hamiltonian for n > 2.

3. In @, there exists a hamiltonian path between any pair of a black
and a white vertex (see [8, Lemma 1]).

The following result proves that a cube graph @,, remains hamiltonian after
removing any n — 2 edges.
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Lemma 2 [7): It holds
t'(Qn,Con)=n-—1.

Proof. Removing n — 1 edges from @, incident to the same vertex results
in a non-hamiltonian graph, that is, in a graph without a subgraph Can.

Now consider a graph obtained by removing any n — 2 edges from Q.
Let 7, 1 < r < n —2, be the number of different parallel classes to which
the removed edges belong. Therefore, at most n —2 - (r—1)=n—-r—1
edges belong to the same parallel class. The removal of all the edges of
these r parallel classes results in 27 disjoint subcubes Q,—,. Contraction
of the vertices of each of these Q,_-s in Q, to a single vertex yields a Q...

In the case r > 2 choose a hamiltonian cycle C, which exists in @, by
Proposition 2, and an arbitrary orientation of C. For each oriented edge uv
of C consider the two copies @ and Q' of @, corresponding to v and v,
respectively. There are 2"~ parallel edges between @ and Q' and therefore
27-7-1 edges from the black vertices of Q to the white vertices of Q' in Q..
There remains at least one of these edges after the removal of the n — 2
edges of Qy, since n —r — 1 < 2"~"~1. For each oriented edge of C choose
one of those remaining edges of Q. Therefore, in each Q,,—, there exists a
black vertex and a white vertex incident to such a chosen edge. Since there
exists a hamiltonian path between these pairs of black and white vertices
in each Q.- according to Proposition 3, there is a hamiltonian cycle in
@n.

In the case 7 = 1 we obtain just two subcubes Q & @' = Qn,—-; by
the removal of the corresponding parallel class. Note that, by the same
argument as before, there is one edge from a white vertex of @ to a black
vertex of @', and vice versa. These edges together with the corresponding
hamiltonian paths in Q and @’ form a hamiltonian cycle in Qy. o

Using the preceding lemma we can solve the “hamiltonian case” k = 2%
completely.
Corollary 2. It holds

f(@n,Con) =n2"" ' —n+1.

Proof. Theorem 3 and Lemma. 2 imply that f(Qn,Can) < n2"" 1 —(n—1)
since g(Qn) = n2"~1. Coloring all edges incident to the same vertex with
one color and all other edges with additional pairwise distinct colors proves

the lower bound. O
3. Exact results for small cube graphs Q,

The cube graph Q; does not contain a cycle, and Q2 as host graph is
completely solved by Corollary 2: f(Q2,C4) = 3. The following theorem
covers the case n = 3.
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Theorem 4: It holds
f(Q3,Cq) =8, f(Q3,Cs) =09, and f(Qs,Cs) = 10.

Proof. The value of f(Q3,Cs) is determined in Corollary 2 and that of
f(Q3,C4) in {1, Theorem 3] (note that C; & Q-).

Theorem 1 proves f(Qs,Cs) 2 9.

We prove equality by showing that each coloring of Q3 with 10 colors
contains a rainbow cycle Cs.

Consider an arbitrary set of i + 1 edges of Q3 and count the cycles Cg
containing at least two of these edges. The maximum number of Cgs over
all (¢ + 1)-sets is denoted by g(z).

To determine upper bounds for g(1) and g(2) observe that there are 16
distinct copies of Cg in in Q3. Since Q3 has 12 edges there are 16-6/12 = 8
copies of Cg that contain a certain edge implying g(1) < g(2) < 8. Since
for any pair of edges there exists a Cs containing just one of these edges, it
follows g(1) < 8.

An edge coloring of Q3 with 10 colors contains either two pairs of equally
colored edges or a triple of edges of the same color. Therefore, the number
of non-rainbow copies of Cg is at most g(1) + g(1) < 16 or g(2) < 16,
respectively, that is, in both cases there remains at least one rainbow copy
in Qs. |
Note that, considering the indices of g(i) in the preceeding proof, 141 and
2 are all possible partitions of 12 — 10 where 12 is the number of edges of
Q3 and 10 the number of colors. This idea will also be used in the following
determination of f(Q4,Ck).

Theorem 5: It holds
f(Q4,Cq) =18, f(Q4,Cs) =20, f(Q4,Cs) =21, f(Q4,Clo) =25,
f(Q4,C12) =25, f(Q4,C14) =26, and f(Q4,Cie) = 29.

Proof: The value of f(Q4,C%) for k = 4 is determined in (1, Theorem 4]
and for k = 16 in Corollary 2.

In the remaining cases we first prove lower bounds for f(Qg4, Ck).

In the case k = 6 deletion of the four white vertices in Figure 1, which
implies deletion of all double-line edges, too, results in a graph without a
cycle Cg implying ¢(Q4, Cs) < 4. Therefore, f(Q4,Cs) > 20 by Theorem 2.

For k = 8 color all double-line edges in Figure 2 with one color and all
the other edges with additional pairwise distinct colors. This coloring uses
21 colors. Removal of the 12 double-line edges results in a graph with two
components not containing a cycle Cg. Therefore, any Cg in Q4 contains
two of the double-line edges and thus is not rainbow.
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Figure 1: f(Q4,Cs) = 20. Figure 2: f(Q4,Cs) > 21.

For k = 10 and k = 12 we have f(Q4,Ck) = 25 by Theorem 1, and
Corollary 1 gives f(Q4,C14) > 26.

To prove the corresponding upper bounds we generalize the method of
the proof of Theorem 4.

Extending the definition of g(i) we consider an edge coloring of Q4
containing i; + 1 edges of color j for j = 1,...,t and all other edges of
additional pairwise distinct color. This coloring uses 32 — (i3 +i2+...+1;)
colors. The maximum number of non-rainbow Cis over all such colorings
is denoted by g(i1,12,. .., ).

To prove f(Q4, Ck) < z it suffices to show that g(i1,142,...,4) is smaller
than the number of copies of C in Q4 for all partitions (iy,12,..., 1) with
f1+i2+...+4:=32—2.

Using the fact that g(i1,...,%) < g(i1,...,%r) + g(4r41,- - -, %) reduces
the number of cases to be considered. Note that the order of arguments in

function g is not important.
We used a computer to establish the respective upper bounds. o

4. Concluding remarks

Applying the results of Theorem 1 and Corollary 2 yields the lower bounds
for f(@s,Cx) in Table 1.

k |4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
£(Qs,Cx) |20 35 35 50 50 50 50 65 65 65 65 65 68 72 76

Table 1: Lower bounds for f(Qs,Ck).

Note that Corollary 2 proves f(Qs, Ca2) = 76 and that f(Qs,Cs) = 43 (see

(3, Theorem 1]).
The following result provides a general upper bound for f(H,G).
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Theorem 6: Let F, G, and H be graphs with G C F C H. Then
f(H,G) < f(H,F)+ f(F,G) — q(F) + 1.

Proof: An edge coloring of H with f(H, F)+1 colors assures the existence
of a rainbow copy of F in H, that is, this copy has g(F) colors. Reducing
the number of colors in H by ¢(F) — f(F,G) — 1 results in a coloring of
H using f(H,F) —q(F) + f(F,G) + 2 colors with a copy of F' in H using
at least f(F,G) + 1 colors. Thus, there exists a rainbow copy of G in F
and therefore also in H. This proves that in any edge coloring of H with
f(H,F)+ f(F,G) — g(F) + 2 colors there is a rainbow copy of G. o

Setting H & Qs, G & Ci, and F 2 @Qs,Q4 gives the upper bounds in
Table 2. Note that f(Qs,Q3) = 68 (see [3]) and f(Qs,Q4) = 76 (see [1)).

k |6 8 10 12 14 16
f@Ci)<|65 66 70 70 71 74

Table 2: Upper bounds for f(Qs, Ck).
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