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Abstract

We give general lower bounds and upper bounds on the maxi-
mum degree A(G) of a 3;-critical graph G in terms of the order of
G. We also establish tighter sharp lower bounds on A(G) in terms
of the order of G for several families of 3,-critical graphs, such as
crown-graphs, claw-free graphs, and graphs with independence num-
ber a(G) = 2.
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1 Introduction

In this paper we will focus our study on simple, loopless, undirected graphs.
For a graph G, V(G) and E(G) will denote the vertez set and the edge set
of G, respectively. Therefore, a vertez of G is an element of V(G), even if,
for simplicity, we occasionally write v € G rather than v € V(G).

Given vertices u and v of a graph G, we say that u is a neighbor of v (or
is adjacent to v) if the edge uv is in E(G). The open neighborhood N(v) of
a vertex v is the set of all the neighbors of v, while the closed neighborhood
of v is defined by N[v] = N(v) U {v}. Finally, if B C V(G), the set of
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vertices of B adjacent to a vertex v of G will be denoted Np(v). Clearly
Np(v)=N(v)nB.

For a given vertex v, the cardinality of N(v) is known as the degree of v,
and is denoted by deg(v). The minimum degree and mazimum degree of G
are defined by

§(G) = min, deg(v), A(G) = max deg(v),

respectively. The order of G, denoted by |G| is the number of vertices of G,
while the size of G is the number of edges of G. Finally, the independence
number a(G) is the maximum number of pairwise nonadjacent vertices in
G.

For sets S, X C V(G), we say that S dominates X, and write S > X, if
every vertex in X \ S is adjacent to at least one vertex in S, while we say
that S totally dominates X, and write S >, X, if every vertex in X U S
is adjacent to at least one vertex in S. If § = {s} or X = {z}, we also
write 8 =3 X, S > z, etc, while, we say that the edge uv dominates X if
w € E(G) and {u,v} > X.

A total dominating set in a graph G is any S C V(G) such that S >,
V(G). Note that graphs with isolated vertices have no total dominating
sets, while every graph G with no isolated vertices has a total dominating
set, since one could trivially choose S = V(G). In the latter case it makes
sense to define the total domination number ~,(G) as the minimum cardi-
nality of a total dominating set of G. Moreover, since for a disconnected
graph with no isolated vertices, the total domination number is just the
sum of the total domination numbers of its components, for the rest of our
discussion we will assume G is a connected graph. Finally, note that for
every graph G, 7:.(G) > 2. Henning [7], gives a survey of recent results on
total domination.

If G is not a clique, and if v:(G +e€) < 1:(G) = k, for any natural number
k > 3 and for any edge e ¢ E(G), then G is said to be ~,-critical. Van der
Merwe, Haynes, and Mynhardt [9] initiated the study of ~.-critical graphs.
Although they characterized several families of 3;-critical graphs, much is
unknown about <,-critical graphs, and in particular 3;-critical graphs.

It has been shown [9] that, by adding an edge e to a graph G, the total
domination number cannot drop by more than 2, that is, 1(G) — 2 <
(G + €) € 1(G). Graphs for which v(G + €) = 1(G) — 2 for each
e ¢ E(G) are called supercritical. It was proven in [6] that a graph is
4,-supercritical if and only if it consists of the union of two cliques K, K,
with 7,8 > 2. If G is either 3;-critical or 4,-supercritical, for any e ¢ E(G)
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we necessarily have v,(G + e) = 2. This fact has an interesting application
in the study of diameter 2-critical graphs, namely, those graphs of diameter
2 for which the removal of any edge would increase the diameter. Indeed,
Hanson and Wang [3] showed the following important relationship.

Theorem 1 A groph is diameter 2-critical if and only if its complement is
either 3;-critical or 4,-supercritical.

The diameter of G will be denoted by diam(G). In excess of 30 years
ago, Murty and Simon (1] posed the following conjecture.

Conjecture 1 If G is a diameter 2-critical graph with order n and size m,
then m < |n%/4], with equality if and only if G is the complete bipartite

graph K[ 47,13]-

In view of Theorem 1, Conjecture 1 can be rephrased in terms of the
complement of a graph, that is:

Conjecture 2 If G is a graph with order n and size m, then

(i) if G is 3;-critical, then m > [n(n - 2)/4];
(i) if G is 4;-supercritical, then m = [n(n - 2)/4].

Condition (47) has been proved in [3]. Recently, Condition (i) was settled
for the two following families of 3,-critical graphs.

Theorem 2 [4] If G is a 3;-critical graph of diameter 3, order n, and size
m, then m > [n(n —2)/4].

Theorem 3 [4] If G is a 3;-critical claw-free graph of order n and size m,
then m > [n(n — 2)/4].

Note that a graph is claw-free if it does not contain the complete bipar-
tite graph K3 as an induced subgraph. To settle the above conjectures
completely, it will be useful to further study properties of 3;-critical graphs.
In this paper we establish the maximum degree A(G) for some families of
3.-critical graphs G, in terms of the order of G. In Section 2, we give general
upper and lower bounds on the maximum degree for 3;-critical graphs in
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terms of the order of G. For the remainder of the paper, we establish sharp
upper and lower bounds on the maximum degree in terms of the order for
specific families of graphs. In particular, in Section 3, we study 3.-critical
graphs G with a(G) = 2 and in Section 4, we study crown graphs, while in
Section 5, we study claw-free graphs.

2 General bounds for A(G)

In this section we present some general upper bounds and lower bounds for
A(G) in terms of the order n of a 3;-critical graph G.

We start by presenting a characterization of 3;-critical graphs that will
be useful in our study. If u,v,w € V(G) and {u,v} >; V(G) \ {w}, we
will denote this by uv — w. Note that v — w and v.(G) = 3 imply that
uwv € E(G) while uw,vw ¢ E(G).

Proposition 4 (9] If 7:(G) = 3, then G is 3;-critical if and only if for any
pair of nonadjacent vertices u and v, either

1. {u,v} > V(G), or

2. uw > v for some w € N(u), or

3. vw — u for some w € N(v).

Lemma 5 [9) If G is a 3;-critical graph, then |G| > 5. Furthermore, if
|G| = 5 then G = Cs, the cycle on five vertices.

Cockayne et al. (2] showed that if a graph G is connected and A(G) <
|G| — 1, then %(G) < |G| — A(G). This result leads to the following

observation.

Observation 6 [9] Any graph G with 7:(G) = 3 has A(G) < |G|-3. More
generally, A(G) < |G| — 1:(G)-

Although there are many examples of 3;-critical graphs G with A(G) =
|G| — 3, only one of them is regular, as the following proposition shows.

Proposition 7 If G is a 3;-critical (|G| — 3)-regular graph, then G = Cs.



Proof. The complement G is 2-regular, and by Theorem 1, has diameter
2. Therefore G = C,, for some n < 5. In view of Lemma 5, we can conclude

that n=5and that G=Cs. O

Theorem 8 If G is a 3,-critical graph with |G| > 5, then A(G) 2 [3]G]].

Proof. Let n = |G| and k = A(G). If a(G) = 2, by [9] diam(G) = 2,
so that any two nonadjacent vertices u, v share at least one neighbor. If
n 2 2k +2, or if n = 2k + 1 but deg(v) < k, u and v cannot have common
neighbors, a contradition. Thus, let G be k-regular with n = 2k + 1, which
implies k£ > 3. Let u and v be nonadjacent and let w be their only common
neighbor. Partition V(G) \ {u,v,w} into disjoint sets A = N(u) \ {w},
B = N(v) \ {w}. It is easy to see that the subgraphs induced by A and by
B are cliques of cardinality & — 1. Vertex w is nonadjacent to some a; € A
(otherwise deg(w) = k + 1). If w is adjacent to some ap € A, then w and
a) share two neighbors (u and a5), a contradiction. Thus, w is nonadjacent
to any vertex in A and, with similar reasoning, to any vertex in B, which
implies deg(w) = 2 < k, again a contradiction.

We may now assume o(G) 2> 3, and, by way of contradiction, suppose
that n > 2k + 1. Since a(G) 2 3, let v and w be nonadjacent vertices such
that {u,w} ¥ V(G). By Proposition 4, and without loss of generality, we
may assume there is a vertex v € V such that uwv — w.

We partition V' \ {u, v, w} into sets
A= N(u)\ N(v), B = N(v)\ N(u), C = N(u)NnN(v).

It is easy to verify that C = @, |A| = |B| = k—1, and therefore n = 2k+1,
which also implies k > 3. Since deg(w) < k < 2k—2 = |A|+|B|, we may as-
sume, without loss of generality, that there is an a € A that is nonadjacent
to w. Since v is nonadjacent to w, {a,v} ¥ V(G) and by Proposition 4,
there is a vertex = such that az + v or vz — a. If az — v, then z € A.
But then deg(a) + deg(z) > 2k + 1, since u € (N(a) N N(z)), a contra-
diction. Assume then that vz — a. Then z € B and z > A\ {a}. Also,
z is nonadjacent to any vertex in B\ {z}. Then {u,z} ¥ V(G) and by
Proposition 4, there is a vertex y such that zy — v or vy = z. If zy — v,
then y = w since z is nonadjacent to any vertex in B \ {z}. But then
{z,y} ¥: a and hence, Ty w5 u. If uy — z, then y = a since z > A\ {a}.
But then {u,y} %: w, a contradiction. Hence, n < 2k. D

Combining Observation 6 and Theorem 8, we have the following theorem.
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Theorem 9 If G is a 3;-critical graph, then [1|G|] < A(G) < |G| - 3.

3 3;-critical graphs G with o(G) = 2.

In this section we show that the additional condition a(G) = 2 allows us
to improve the general lower bound provided by Theorem 8. This family
of 3;-critical graphs is characterized in [9], where it is also established that
diam(G) = 2. In particular, since when a(G) = 2, every pair of nonadjacent
vertices dominates G, by Proposition 4 we have

Lemma 10 If v:(G) = 3 and o(G) = 2, then G is 3,-critical.

Another straightforward yet important fact that will be used several
times is the following.

Lemma 11 If G is a 3;-critical graph with o(G) = 2, then two vertices are
adjacent if and only if they share a common nonneighbor.

In particular, if u and v are nonadjacent vertices, we have

n = deg(u) + deg(v) — [N(u) N N(v)| + 2. (1)

Theorem 12 If G is a 3;-critical graph with a(G) = 2, then A(G) 2
[31G1 - 1].

Proof. Let n = |G| and k = A(G). Among all pairs of nonadjacent vertices
in G, let (u,v) be a pair maximizing deg(u) + deg(v). Note that a(G) = 2
implies that deg(u) + deg(v) is maximum exactly when |[N(u) N N(v)| is
maximum. We then partition V(G) \ {u,v} into the three subsets

A=N@\N@), B=N@\Nx), C=N@)nN(@).

Furthermore
|A| +|C| = deg(u) < k,  |B|+|C| =deg(v) <k, (2)

and that, by Lemma 11, any two vertices in A are necessarily adjacent,
having v as a common nonneighbor. A similar reasoning applies to B, so
that both A and B are complete.
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Since, as noted above, G has diameter 2, C is necessarily nonempty.
Thus, let ¢; € C. Since {c1,v} > V(G) \ A, while {¢1,v} ¥ V(G), there
must be a vertex a; € A that is nonadjacent to ¢;. Similarly, there is a
vertex b; € B that is nonadjacent to ¢;. Since every pair of nonadjacent
vertices dominates G, {ai,c1} > V(G) and {b),¢1} > V(G). Since q,
and v are nonadjacent, by the maximality of deg(u) + deg(v), it follows
deg(ai1) € deg(u). Therefore, since a; > A\ {a;}, we have

|NB(a1)] = deg(a1) —(|A] — 1)—1—|Nc(a1)| < deg(a1) - |A| < deg(u)—|A]
=C.
Also, since v € N(b;) N N(c;), we have Ng(e1) G N(by) N N(c1), so that
. INg(a1)| < [N(b1) N N(e1)l € IN(u) N N(v)| = |C].

Finally, since {a1,c;} > B, we have

|B] € INB(a1)| + |NB(e1)| € 2/C| - 1. (3)
From (2) and (3), we then obtain
n = |Al+|B]|+]|C|+2
_ s(Al+lCn+2(Bl+I|C) +|B|-2[C| +6
3
5k+5 5
L —m=-—

which completes the proof. O

By combining Proposition 6 with Theorem 12 and Theorem 8 we can
determine a range of possible values of A(G) in terms of the order n, as
presented in Table 1.

At this point a natural question is whether, according to Table 1, for any
possible pair of values (n, k) there exist 3;-critical graphs with order n and
A(G) = k. In general, we do not have a definitive answer, as, for instance,
we currently have no examples for which (n,k) = (12,6). Note that, if
in this last case an example exists, by Proposition 12 it must necessarily
satisfy a(G) > 2. For the case a(G) = 2, however, a positive answer is
provided in Theorem 15.

We say that vertices u and v of G are twin vertices (or duplicate vertices)
if N[u] = N[v]. A graph G’ is said to be obtainable from G by vertex
duplication if G’ has twin vertices u and v such that G = G’ — v.

The proof of the following is a simple routine and is left to the reader.
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n [3n] [2n—1] n—3 k

5 - 2 2 2

6 3 3 3 3

7 4 4 4 4

8 4 4 5 4,5

9 5 5 6 5,6
10 5 5 7 5,6,7
11 6 6 8 6,7,8
12 6 7 9 6,7,8,9

Table 1: Possible values for £ = A(G) in terms of the order n.

Lemma 13 Let G be a graph with a(G) = 2, and let G’ be obtainable from
G by vertex duplication. Then

i. a(G')=2;
ii. G' is 3;-critical if and only if G is 3;-critical.

We observe that a similar result does not hold when a(G) > 2. This fact will
be discussed in Section 5 and involves the definition of duplicable vertices

(see Figure 5 for an example).

A graph G is said to be a 5-cycle-type graph if G can be obtained from
the 5-cycle Cs through a sequence of vertex duplications. In other words,
a 5-cycle-type graph may be viewed as a 5-cycle in which each vertex has
been replaced by a clique of suitable size. In particular, if the sizes of these
cliques are cy,...,cs, we will write G = C(4,, 12, i3, %4, i5).

The following statement can be proved by direct inspection.
Proposition 14 If G = C(iy,%2,13,14,15) 5 a 5-cycle-type graph, then
5
i |G| = Z ij:
j=1
. A(G) = m;gx(ij_l + ij + ij.;.l) -1,

ii. a(G) =2,
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Figure 1: The graph C(3,1,2,2,1).
w. G is 3;-critical,
where indices have to be considered modulo 5.

-3.

Theorem 15 Let n,k € N such that n > 5 and [3 - 1] <
and

Then there exists a 3;-critical graph G of order n with A(G)
a(G)=2.

II //\

Proof. Using Proposition 14 it is easy to show that G = C(n — 4p, |p|,
[p],[p],|p)) wherep = ""‘ 1 satisfies all of the requirements. This check

is left to the reader. O

Another interesting property of 5-cycle-type graphs is that they exhaust
the class of 3;-critical graphs with a(G) = 2 and A(G) = |G| — 3, as stated
in the following theorem.

Theorem 16 If G is a 3;-critical graph with a(G) = 2 and A(G) = |G|-3,
then G is a 5-cycle-type graph.

Proof. Let u be a vertex of maximum degree in G, so that V(G) \ N(u)
consists of exactly two vertices, say v and w. We first note that N(v) N
N(w) = @. Indeed, if z € N(v) N N(w), we have {u,z} >; V(G), which is
a contradiction. We can then partition V(G) in the three subsets

A=N@\{w}, B=Nw\{r}, D=V(G\(AUBU{v}U{uw}).

Since all the vertices in A U D share the common nonneighbor w, by
Lemma 11 we conclude that AU D is a clique. Similarly for BU D. In
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particular, this fact implies that A, B, and D are all nonempty. Indeed,
if A= @, then BU D would be a clique of order n — 2, which, because of
A(G) = n — 3, would easily imply that G is disconnected.

In addition, for any £ € A, y € B we have z > AUDU {v}, y >
Bu Du {w}, which implies {z,y} > V(G), and therefore = and y are non-
adjacent. Thus we conclude that N{z] = AU DU {v} for any z € A, that
is, all vertices in A are twins. Similarly, all vertices in B are twins and the
same holds for all vertices in D are twins. Since by removing all duplicates
we are down to a 5-cycle, we conclude that G is a 5-cycle-type graph. O

Another interesting class of 3;-critical graphs with a(G) = 2 is the sub-
class of circulant graphs C(n) = Cin (1,2,..., 252), for any n = 2 (mod 3).
These graphs will be considered again in the next section.

We observe that, since C5y = Cs, we can extend this class of circulant
graphs by vertex duplication to contain the class of 5-cycle-type graphs.
However, there are still examples of 3;-critical graphs G with a(G) = 2
that cannot be obtained from any circulant graph of the form Ci,,y through
vertex duplication, as, for instance, the complement of the Petersen graph.

N
N/

Figure 2: The graphs C(s) and the complement of Petersen graph

4 Crown graphs

In this section we continue investigating how additional conditions on the
structure of a 3-critical graph G may improve the general lower bound
provided by Theorem 8. We here study the class of crown graphs defined
in [9). A graph G is said to be a crown graph if G is 3,-critical and for any
pair of nonadjacent vertices u and v in G, there exist vertices z and y in
G such that uz — v and vy — u. We note that if G is a 3,-critical graph
with nonadjacent vertices v and w in G, and uv — w, for some vertex v,
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then we have

|G| = deg(u) + deg(v) — |[N(u) N N(v)] + 1. (4)
Lemma 17 If G is a crown graph, then |G| < A(G) + 36(G) + 2.

Proof. Let n = |G|, k = A(G), § = §(G), and let u be a vertex of degree
8. Let A be the set of neighbors of u, and let B be the set of nonneighbors
of u. Then |B| =n—4§—1, so that we can write B = {b;,...,bn—s5-1}. For
each b; € B there is at least one distinct vertex a; € A such that ua; — b;.
Let b, and b, be vertices in B such that b.b, — u. Note that ua; — b;
implies that a;, i # 7, s, is adjacent to both b, and b,. Thus, b, and b, have
at least n—d — 3 common neighbors in A, that is [N(b,)NN(bs)| > n—6-3.
By (4) we have

< deg(by) +deg(bs) —(n—6—-3)+1<2k—n+6+4,

which yields n < k+ 36 +2. O

Since §(G) € A(G), Lemma 17 can be adapted to provide a better lower
bound for A(G) in terms of the order n in the case of crown graphs.

Corollary 18 If G is a crown graph, then A(G) > [%(|G| - 2)].

When equality holds in Corollary 18, then Lemma 17 yields 6(G) = A(G)
so that we have the following interesting result.

Corollary 19 If G is a crown graph with A(G) = [3(|G| - 2)], then G is
regular.

We can also establish a lower bound for §(G) in terms of |G|, namely:
Lemma 20 If G is a crown graph, then §(G) > [1(|G| - 1)].

Proof. Let u be an arbitrary vertex in G, and define A as the set of neigh-
bors of u and B as the set of nonneighbors of u. As noted in the proof of
Lemma 17, for every vertex b € B there is a distict vertex @ € A such that
ua — b. Therefore, |A| > | B, which implies deg(v) > (/G| —1). O
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Figure 3: Crown graph with §(G) = (|G| — 1)

The inequality in Lemma 20 is sharp for |G| arbitrarily large, as shown
by the following construction.

For any r > 1 define V(G) = {u,z1,...,Zr,¥1,...,¥Yr}. Define the sub-
graph H of G induced by {z,,...,z,} in any way as long as no edge in H
dominates H (see Figure 3 for an example). Define the subgraph H’ induced
by {y1,---,Yr} by requiring (y;,y;) € E(H') if and only if (z:,z;) ¢ E(H).
We then have H' ~ H. Connect all the vertices in H with all the vertices
in H' except for the perfect matching (z;,¥:), ¢ = 1,...,7. Finally, connect
u with all the vertices in H. Simple inspection shows that G is a crown
graph. Since |G| = 2 + 1 and &§(G) =r, then §(G) = (|G| - 1).

When, in Lemma 20, equality is attained, the result of Corollary 18 can
be further improved as follows.

Corollary 21 If G is a crown graph with §(G) = 3(|G| —1), then A(G) 2
3(1G|=7
2]
Proof. From Lemma 17 we have
1
Gl < AG) + 7(n—1) +2

which is equivalent to A(G) 2 ELC-'}_—?. o

By combining Proposition 6 with Corollary 18 and Corollary 21, we can
determine a range of possible values of A(G) in terms of the order n as
presented in Table 2.

The upper bound provided by Observation 6 is sharp within the class of
crown graphs and for |G| arbitrarily large. Indeed, for every odd number
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(o] e | e |
5 2 2 2 2
6 3 3 3 3
7 4 4 4 4
8 4 5 5 4,5
9 5 5 6 5,6
10 6 6 7 6,7
11 6 7 8 6,7,8
12 7 8 9 7,8,9

Table 2: Possible values for k = A(G) and order n for crown graphs.

n 2> 5 a crown graph with order n and A(G) = n — 3 can be constructed
by defining V(G) = {u,z1,...,Zr, Y1, - -+ Yr, v, w}, where r = "—2—'3 Define
the subgraph H of G induced by {z1,...,2,}, and define the subgraph
H' induced by {y1,...,y-} by requiring (y;,y;) € E(H') if and only if
(zi,z;) ¢ E(H). We then have H' = H (see Figure 4 for an example).
Connect all the vertices in H with all the vertices in H’ except for the
perfect matching (z;,¥:), ¢ = 1,...,r. Connect u with all the vertices in
H and H’, connect v with w and with all the vertices in H, and connect
w with all the vertices in H’. The graph G can be shown to be 3;-critical
with order n and A(G) =n —3.

The lower bound provided in Corollary 18 is also sharp for n arbitrarily
large. Indeed, it is sufficient to observe that the circulant graphs C(n)

defined in Section 3 are crown graphs with A(G) = ﬁ"s;‘zz

Finally, also the lower bound given in Corollary 21 is sharp for n arbi-
trarily large. Indeed, it is sufficient to modify the construction presented
after Lemma 20 by requiring H to be a [Z52]-regular graph. This con-
struction leads to a graph G with n = 2r + 1, A(G) = [352], that yields

A(6) = [

5 Claw-free graphs

A graph G is said to be claw-free if it does not contain K 3 as an induced
subgraph. As 5-cycle-type graphs are claw-free, in view of Theorem 15 we
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Figure 4: A crown graph with A(G) = |G| - 3.

do not expect claw-freeness to lead to any significant improvement in lower
and upper bounds for A(G), in general. However, as long as a(G) > 2, the
lower bound may be improved as shown in the following result.

Theorem 22 If G is a 3;-critical claw-free graph with o(G) > 2, then
AG) > [3(61-2)].

Proof. We can write A(G) = 2m +r, for 7 € {0,1}. Note that, if, by way
of contradiction, A(G) < [2(|G| —2)], we then have |G| > 3m +r + 3.

Since a(G) > 2, G has nonadjacent vertices v and w such that {u,w} ¥
V(G), and by Proposition 4, without loss of generality, we may assume that
uv — w for some vertex v. We then partition V(G) \ {u, v, w} into sets

A= N(u)\ N(v), B = N(v)\ N(u), C = N(u) N N(v).
The proof proceeds now by steps as follows.

1. |[Al+|C|<2m+7r-1; |B|+|C|<2m+7—1.
Indeed |A| + |C| = deg(u) —1 < k— 1 = 2m + r — 1. Similarly for
|B| +|CI.

2. Al z2m+1;|Bl2m+1;|C|<m+r-2.
Indeed, by step 1 we can write |A| =n—(|B|+|C|)—3 2 (3m+r+
3)— (2m+r —1) —3 = m+ 1. The computations for |B| and for |C|
are along the same line.

3. Ifzy v z for x,y,z € V(G), then = and y have at most m + r — 2
common neighbors.
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This fact comes directly from |C| £ m +r — 2, with z,y, z in place of
U, U, W.

. A and B are complete graphs (cliques). ‘
If a),a2 € A and aya2 ¢ E(G), then {u,v,a;,az} induces a claw. A
similar reasoning applies for B.

. There exist a € A and x € C such that aw ¢ E(G), z > (A\ {a}) U
{w}, w> (A\ {a}) U {z}, and vz — a.

Actually, this can be claimed without loss of generality. Indeed, since,
by step 2, deg(w) £ 2m +r < 2m + 2 < |A| + |B|, without loss
of generality, we can assume that there is a vertex a € A that is
nonadjacent to w. Note that {a,v} ¥ V(G), since neither a nor v is
adjacent to w. Then by Proposition 4, there is a vertex z such that
QT + U OF VT > a.

o If ax > v, then z € A. Since, by step 4, AU {u} is complete,
then a and z have at least |4| — 2 + 1 > m common neighbors,
which, by step 3, is a contradiction.

e Ifvr— a,thenxz € Borz € C. If z € B, then since B is
complete, with a similar reasoning as above, we conclude that =
and v have at least m common neighbors in B, which is again a
contradiction.

Thus vz — a and z € C. In particular z > (A4 \ {a}) U {w}. Finally,
if w is nonadjacent to a vertex o’ € A\ {a}, then {z,a’,w,v} induces
a claw. Therefore w must be adjacent to every vertex in A\ {a}.

. There exist b € B and 2’ € C such that bw ¢ E(G), ' = (B\ {$}) U
{w}, w> (B\ {}) U{z'}, and uz’ — b.

As shown in step 5, w has at least m + 1 neighbors in AU C. Since
deg(w) € 2m + r, then w has at most m neighbors in B. So there
exists b € B with bw ¢ E(G). Using similar reasoning to step 5
for set A, we can show that there exists 2’ € C such that uz’ — b,
z' > (B\ {d}) U{w}, and w > (B \ {b}) U {='}.

.x=1.

It suffices to observe that, by steps 5 and 6, w > (A\{a}) U
(B\ {b}) U {z, z'}. If z and 2’ are distinct, then deg(w) > 2m+2 >
2m +r = A(G).

. deg(z) 2 2m + 3, that is, a contradiction.

Since z = 7/, by steps 5 and 6 we now have z > (4 \ {a})U(B\ {b})U
{©,v,w}, and by step 2 we conclude that deg(z) > 2m + 3.
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In Theorem 24 we will show that the lower bound in Theorem 22 is
actually sharp. To facilitate this, we need to extend some terminology
introduced in Section 3 about duplicate vertices. In particular we say that
a vertex u of a 3,-critical graph G is duplicable if, for any v ¢ N(u) either
{u,v} » V(G) or uz — v for some vertex z. When a(G) = 2, or when
G is a crown graph, every vertex is automatically duplicable. However,
observe that in the graph presented in Figure 5 only vertices u, v, and w
are duplicable.

v
Figure 5: A 3;-critical graph with nonduplicable vertices.

By direct inspection one can easily prove the following.

Lemma 23 Let G be a 3;-critical graph and let u be a duplicable vertez
of G. Then the graph G' obtained from G by duplicating u is 3,-critical.
Furthermore, u is still duplicable in G'.

For claw-free graphs we have the following theorem, similar to Theo-
rem 15 obtained in the case a(G) = 2.

Theorem 24 Let n,k € N such thatn > 8 and [3(n—2)] <k <n-3.
Then there exists a 3,-critical claw-free graph G of order n with A(G) =k
and o(G) > 2.

Proof. We first consider the case [-g-(n -2)] < k € n-4. We already
observed that, if G is the graph in Figure 5, then G is 3;-critical, a(G) > 2,
with u, v, and w as duplicable vertices. We then define a graph G’ obtained
through vertex duplication by replacing u, v, and w by cliques K, K, and
K, respectively, where r = ['k—;—z-], s=|52],andt =n-k-3 In
particular, the condition [3(n—2)] Sk <n—4impliesr>s2t>1.
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By Lemma 23, G’ is 3;-critical. In addition G’ is claw-free and o(G’) > 2.
We can see that n = r 4+ s + t + 5. Moreover, vertex y has degree r + s;
vertices in KU K, have degree r + s+2 = k; the four vertices inducing the
4-cycle have degree either r + ¢ + 2 or s 4t + 2; vertices in K; have degree
t+3=n—k <k (sincek > [%(n —2)] > 5 when n > 8). Sincer > s > ¢,
the maximum degree A(G) is attained by the vertices in K, U K, and is
equal to k.

In order to address the case k = n—3, we first observe that the graph G in
Figure 6 is a claw-free 3;-critical graph with a(G) > 2. In addition, A(G) =
|G) — 3. Since u, v, and w are duplicable vertices, by vertex duplicating
(any of) these vertices a suitable number of times, we can attain a graph
G’ of order n which is still 3;-critical, claw-free, and satisfies a(G’) > 2 and
A(G)=|G'|-3. 0

w

Figure 6: Claw-free 3;-critical graph with a(G) = 3, and A(G) = |G| - 3.

6 Future developments

While for the case a(G) = 2, as well for crown graphs and for claw-free
graphs, we established sharp lower bounds on A(G), we still lack a sharp
lower bound for the general case, as we think that the bound [|G|} pro-
vided in Theorem 8 is not sharp, starting, probably, from |G| = 12.

It is also somehow bizarre that in the general case, the additional condi-
tion a(G) = 2 yields a tighter lower bound (Theorem 12), while, within the
class of claw-free graphs, the condition a(G) > 2 is the one that provides
the tighter lower bound (Theorem 22). This fact may be due, again, to the
lack of a sharp lower bound for the general case, which, at this point we
really think should be studied and possibly determined.

Acknowledgements

The authors are grateful to the referees for useful suggestions which

241



greatly improved the presentation.

References

[1} L. Caccetta and R. Héggkvist, On diameter critical graphs. Discrete
Math. 28 (1979), no. 3, 223-229.

[2] E. Cockayne, R. Dawes, and S. Hedetniemi, Total domination in
graphs. Networks 10 (1980), 211-219.

[3] D. Hanson and P. Wang, A note on extremal total domination edge
critical graphs. Util. Math. 63 (2003), 89-96.

[4] T. W. Haynes, M. A. Henning, L. C. van der Merwe, and A. Yeo,
On a conjecture of Murty and Simon on diameter two critical graphs,
manuscript April, 2009.

[5] T. W. Haynes, M. A. Henning, L. C. van der Merwe, and A. Yeo,
On the existence of k-partite or K,-free total domination edge-critical
graphs, manuscript June, 2009.

(6] T. W. Haynes, C. M. Mynhardt, and L. C. van der Merwe, Criticality
index of total domination. Congr. Numer. 131 (1998), 67-73.

[7] M. A. Henning, Recent results on total domination in graphs: A survey.
Discrete Math. 309 (2009), 32-63.

[8] J. Plesnik, Critical graphs of given diameter. Acta Fac. Rerum Natur.
Univ. Comenian. Math. 30 (1975), 71-93.

(9] L. C. van der Merwe, T. W. Haynes, and C. M. Mynhardt, Total
domination edge critical graphs. Util. Math. 54 (1998), 229-240.

242



