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Abstract

Recently Graves, Pisanski and Watkins have determined the growth
rates of Bilinski diagrams of one-ended, 3-connected, edge-transitive
planar maps. The computation depends solely on the edge-symbol
{p, ¢; k, 1) that was introduced by B. Griinbaum and G. C. Shephard
in their classification of such planar tessellations. We present a cen-
sus of such tessellations in which we describe some of their properties,
such as whether the edge-transitive planar tessellation is vertex- or
face-transitive, self-dual, bipartite or Eulerian. In particular, we or-
der such tessellations according to the growth rate and count the
number of tessellations in each subclass.

1 Introduction

We are interested in planar maps that are 3-connected and dually 3-connected
and one-ended, i.e., the deletion of no finite subgraph leaves two or more
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infinite components. Our maps may be finite or infinite, but locally finite,
i.e., all valences and covalences are finite. It is well known that for every
such map, any automorphism of its underlying graph is extendable to a
homeomorphism of the plane. Such maps are called planar tessellations 7]
or plenar tilings.

We are interested in the “rate of growth” of such maps. This notion
may be defined is several equivalent ways. We count the number of vertices
adjacent with a root vertex, and then we count the number of vertices
adjacent with these vertices, and so on ad infinitum. Our measure of this
rate of growth is the limit of the ratio Dy,41/D, as n approaches infinity,
when such a limit exists, where D,, is the number of of such vertices in the
first n layers around the root. For growth in rooted graphs, see for instance
[14].

Each edge-transitive map is also edge-homogeneous, i.e., there exists a
4-tuple (p, g; k,£) of integers > 3, called the edge-symbol of the map, such
that for each edge, p and ¢ are the valences of its two incident vertices and
k and £ are the covalences of its two incident faces. We will call these maps
(planar edge-transitive) tessellations.

Note that finite planar tessellations tile the sphere, while infinite planar
tessellations may tile the Euclidean or hyperbolic plane.

In case of planar tessellations, the class of edge-transitive tessellations
coincides with the class of edge-homogenous tessellations. This is not the
case for maps on surfaces other than plane or sphere. There exist maps
that are edge-homogeneous and are not edge-transitive. For instance the
standard quadrilateral embedding of the cartesian product of two cycles in
the torus defines an edge-homogeneous map with the edge-symbol (4, 4; 4, 4)
that is not edge-transitive unless both cycles are of the same length. It was
Alen Orbanié who reminded us of this simple example.

2 Preliminaries

For the tessellations considered in this article, Griinbaum and Shephard (8]
have obtained the following strong result.

Theorem 1 [8] There exists an edge-homogeneous planar tessellation with
valences p and g and covalences k and £ if and only if p,q, k, £ are integers
> 3 and exactly one of the following holds:

(1) all of p,q,k,€ are even;
(2) k = £ even, and at least one of p,q is odd;



(8) p = q even, and at least one of k, £ is odd;
(4)p=4q, k = ¢, and all are odd.

Such a tessellation is edge-transitive.

(5) If p = q, then it is vertez-transitive.

(6) If k = £, then it is face-transitive.

(7) If p =k and g = £ the map is self-dual.
(8) If p,q are even, the map is Eulerian,

(9) if k,£ are even, the map is bipartite.

Finally, the parameters p,q,k,¢ determine the map up to homeomor-
phism of the plane.

For a detailed classification of all edge-transitive planar maps, see [6].

Now we can give a definition of the growth rate I' of a rooted graph
G,. Let v be a root of graph G. Let d; denote the number of vertices at

distance i from the root v. Let D,, = Y., d; and

r(G.) = Jim, 52

There are all kinds of problems with the growth rate. It may happen
that the limit does not exist. If it exists it may depend on the root vertex.
Luckily, for edge-transitive planar tessellations the growth rate is indepen-
dent of the root.

In [7] S. Graves, T. Pisanski and M. E. Watkins have determined the
growth rate I'(p, g, k, £) of any tessellation with the edge-symbol (p, g, k, £).
It turns out that the growth rate can be expressed in terms of a single
parameter

t=((p+q)/2-2)((k+)/2-2)
Let us define the function

G(t) = (t -2+ /(t(t — 4))/2.

As shown in (7] the growth rate can be computed in a seemingly more
complicated way, via the so-called Bilinski diagrams. The reader is referred
to [7] for a definition of a Bilinski diagram of a map and its growth rate.
For our purposes these concepts are not needed.
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Theorem 2 ([7]) Let M be an edge-transitive map with the edge-symbol
(p,q; k,£) or {(k,€,p,q), p < q and k < ¢ satisfying the conditions of
Griinbaum and Shephard. Then

(a) If r(p1q’ k’e) = F(t) = G(t): if either p,q,k,{ > 4 orp = 3,9 2
4,k>6, even,orp=q=3,k=£2>86.

(b) IfT(,0,k, &) =T(t) =Gt —1), if p=3,g> 6,k =L =4.

There are nine finite tessellations not covered by this Theorem. There
are also five Euclidean tessellations with growth rate 1. In addition to these
14 exceptional cases all other growth rates are given by the set {G(t)|t =
5,6,...} and are irrational numbers. The smallest exponential growth rate
is (3 + v/5)/2 and there are 6 tessellations attaining this growth rate. The
next one is (2 + v/3) with 10 tessellations.

3 Counting tessellations with a given growth
rate

In this section we will count the number of planar tessellations having
special properties with a given growth rate. Let ap denote the number of
finite tessellations, a; the number of Euclidean tessellations (growth rate
T; = 1), a2 the number of tessellations with the smallest exponential growth
rate [y = G(5) = (3 + V5)/2 and in general let @, count the number of
tessellations with the growth rate G(n + 3).

Before we state the result of Pisanski [12] let us recall some divisor
functions. Let o (n) denote the sum of k-th powers of divisors of a positive
integer n. Similarly, let 02(n) denote the sum of k-th powers of odd divisors
of the number n.

First we will establish the number of maps with a given parameter ¢.
Let N(t) denote the number of maps that exist according to Griinbaum
and Shephard and have the edge-symbol (p, q; k, £) with parameter ¢.

Theorem 3 [12] The number of maps with parameter t is given by:

(a) N(t) = Loo(%)+ £(08(t) —02,(t)) +207(t) +201(5), ift is divisible
by 4.

(b) N(t) = L(oo(}) — 0-1(%)) +201(%), if t is even but § is odd.

(c) N(t) = Hloo(t) + 301(t), if t is odd.

Corollary 8.1 [12] The number of maps a,, is determined by:
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Gn=N(n+3),n21

The following Lemma, {12, Lemma 3.2], will be useful in our proofs. The
subscript ¢ in N;(t) corresponds to one of the conditions 1-4 of Theorem 1.
Furthermore each of the cases 2 and 3 of this theorem can be further divided
into two sub-cases 2.1, 2.2 or 3.1, 3.2, depending on whether only one of the
parameters is odd, or both are odd. Double subscripts in N; ; correspond
to these sub-cases, respectively.

Lemma 4 The numbers of maps N(t), Ni(t), N; ;(t), with parameter t, is
given by:

(1a) Ni(t) = Loo(t/4) + £(a8(t) — 02,(t)), if t is divisible by 4.
(1) Ny(t) = £(0§(t) — 02,(t)), if t is even but £ is odd.

(1c) Ni(t) = Hloo(t) — 3o1(t), if t is odd.

(2.1) Na1(8) = 3(aP(2) — 08(2)).-

(2.2a) Noo(t) = 01(%) + 4(08(t) + 08(t)), if t is divisible by 4.
(2.2b) Nao(t) = L(a9(t) + 08(2)), if t is even but § is odd.
(2.2¢c) Nao(t) =0, if t is odd.

(3.1) N31(t) = 3(0%(t) — a8(t))-

(3.2a) N3a(t) = 01(%) + 3(05(t) + o§(2)), if t is divisible by 4.
(3.2b) Naa(t) = 3(05(t) + o8(2)), if t is even but & is odd.
(3.2c) N3o(t) =0, if t is odd.

(4a) Ny(t) =0, if t is divisible by 4.

(4b) N4(t) =0, if t is even but § is odd.

(4¢) Nu(t) = ao(t), if t is odd;

where Na(t) = Nai(t) + Na2(t), Na(t) = Nay(t) + Nao(t), and N(t) =
Ni(t) + Na(t) + Na(t) + Na(t) = N1(t) + 2N2(¢) + Na(t).

There are five basic subtypes of edge-transitive tessellations: v, f, s, b, e:

vertex-transitive
face-transitive
self-dual
bipartite
eulerian

® o ma
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Hence there are 2% = 32 subsets of types. However, the dual of vertex-
transitive tessellations are face-transitive tessellations, and the dual of Eu-
lerian tessellations are bipartite tessellations. Also, if an edge-transitive
tessellation is both vertex-transitive and self-dual, it must be face-transitive
as well. A self-dual edge-transitive tessellation is bipartite if and only if it
is Eulerian. If an edge-transitive tessellation is vertex-transitive, self-dual
and bipartite then it must be face-transitive and Eulerian as well.

It turns out only 14 subsets of types give rise to different columns:
N:Nb = Ne)Nf = NvaNasNbeaNbf = Nev:Nba = Nea = Nbea,Nbv =
Nef,Nfs = Nsv = Nfsszmebef = Nbeu,Nbfv = NefvaNbfs = Nbsv =
Nefs = Neav = Nbefs = Nbeav = Nbfsv = Nefsv = Nbefsm Nbefv-

Now we can repeat the computation for each of the 14 subclasses of
edge-transitive maps.

Proposition 5 Let Ny(t) denote the number of edge-transitive, bipartite
maps with parameter t. Let N(t) denote the number of edge-transitive,
Eulerian maps with parameter t.

Np(t) = Ne(t) = an(t/‘l) + %(ag(t) —0°,(t)) +03(t), if t is divisible by 4;

Ny(t) = N(t) = —;-(og(t) —0%,(t)) +0f(t),if t is even but £ is odd;
No(t) = Ne(t) = Z22o0(t) = 50(8) + (03(0) = o(2), it s odd.

Proof. Note that the maps counted by Ny(t) are precisely the maps of
Griinbaum-Shephard type 1 or 2. Since we know their number we obtain the
result. Clearly, Eulerian tessellations are the duals of bipartite tessellations,
hence Np(t) = N,(t). QED.

Proposition 6 Let N,(t) denote the number of edge-transitive and vertex-

transitive maps with parameter t. Let Ny(t) denote the number of edge-
transitive and face-transitive maps with parameter t.

Then

N, (t) = Ng(t) = (01(t) + 0§(t))/2,if t is not divisible by 4;
No(t) = Ny(t) = (09(2) + 08(2) + 201(£/2))/2, if t s divisible by 4.
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Proof. To compute Ny(t), consider ¢ = ab with a = p—2 and b =
(k+1—-4)/2. Both a and b are divisors of ¢ in all cases but when exactly
one of k,! is odd. In the latter case we obtain all N3, (t) possible maps.

So assume that k + [ is even. Denote by A the number of maps with
k + ! even and a odd, and by B the number of maps with k + even and a
even. If a is odd then k and ! must be equal by Theorem 1 and are exactly
determined with a. This yields A = 0d(t). If a is even (which can only be
the case if ¢ is even as well) we obtain b = t/a possible choices for k. If ¢ is
even but not divisible by 4 then t/a, a even, corresponds exactly to all odd
divisors of ¢, yielding B = a{(t) = (01(t) — 07(t))/2. If t is divisible by 4
then a = 2ao where qay is a divisor of t/2. Therefore

M2t s,
g R

where ¢ = t/a. Summarizing the results we obtain the assertion. Obviously,
N;(t) = N,(t). QED.

Proposition 7 Let N,(t) denote the number of edge-transitive, self-dual
maps with parameter t. Then

Ns(t) = [V/2], ift is a perfect square.
N,(t) =0, ift is not a perfect square.

Proof. Theorem 1 implies p = k and ¢ = I. Hence t = ((p+¢)/2—2)2 and
N,(t) = 0 unless t is a perfect square. If ¢t = a2 with a € N then we can

choose p s.t. p < g in [v/%/2] many ways. QED.

Proposition 8 Let Ny.(t) denote the number of edge-transitive, bipartite
and Eulerian maps with parameter t. These are ezactly the edge-transitive
maps with all parameters p,q,k,l being even and

Nie(t) = Ni(t).

Note that each vertex-transitive map is either face-transitive or Eule-
rian. Also, each vertex-transitive map that is self-dual is face-transitive.

Proposition 9 Let N.,(t) denote the number of edge-transitive, vertez-
transitive, Eulerian maps with parameter t, and let Nys(t) denote the num-
ber of edge-transitive, face-transitive, bipartite maps with parametert. Then

Neo(t) = Nog(t) = 01(t/2) + (03(t) — 05(t))/2, if t is even;
Neo(t) = Nog(t) = (02(t) — 08(t))/2, if t is odd.
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Proof. In the vertex-transitive, Eulerian case, p = ¢ even. Either exactly
one of k,l is odd (we have N3; maps of this kind) or k = I. In the latter
case t is even and p,q,k,l are determined by a choice of an even divisor
a=p—2oft.

Proposition 10 Let Ny, (t) denote the number of edge-transitive maps that
are both vertez- and face-transitive with parametert. Then

Nyo(t) = oo(t).

Proof. We have p = ¢, k = | and hence ¢t = (p — 2)(k — 2). This means
that p,q, k and ! are exactly described by a choice of a divisor a = p — 2 of

t. QED.

Proposition 11 Let Ny, (t) denote the number of edge-transitive, vertez-
transitive, bipartite maps with parameter t, and let N.s(t) denote the num-
ber of edge-transitive, face-transitive, Bulerian maps with parametert. Then

Niw(2) = Nug(2) = (01(2/2) + 08(£))/2, if t s divisible by 4;
Niu(t) = Nes(t) = (03(t) + 0§(t))/2, if t is even but & is odd;
Npy(t) = Neg(t) =0,if t is odd.

Proof. In the bipartite, vertex-transitive case, k and ! are even and p = g¢.
Either p, q, k and [ are all even or p = ¢ are odd and k = [ are even. Denote
the number of the former maps by X and the number of the latter maps
byY. Then Y =0if t is odd and Y = o§(t) otherwise.

If p,q, k,! are all even, then a = p—2 is even, and for every even divisor
a of t we have |t/2a] possibilities for k. If ¢ is even but not divisible by
4 then b = t/a must be odd and X = (c(t) — 0§(t))/2. For ¢t divisible
by 4, let X. denotes the number of such maps with a and b = t/a both
even, and X, denotes the number of such maps with a even, b odd. Then
Xe = (01(t/2) — 09(¢/2))/2 and X, = (03(t/2) — 0§(¢/2))/2 and X =
X+ X, = (01(t/2) — 0§(t/2)) /2. Observe that for t divisible by 4 we have
o§(t) = a3(t/2) to obtain the desired formulas. QED.

Proposition 12 Let Np.s(t) denote the number of edge-transitive, bipar-
tite, Eulerian and self-dual maps with parameter t. Then

Nies(t) = [Vt/2], if t is a perfect square.
Nypes(t) =0, if t is not a perfect square.
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Proof. In this case, p = k and ¢ = ! with all p,q, k and ! even. As in the
proof of Proposition 7, Nys = 0 if ¢ is not a perfect square. If ¢ is a perfect
square we have |v/t/2| possibilities to choose an even p. QED.

Proposition 13 Let Niey(t) denote the number of edge-transitive, vertex-
transitive, bipartite and Eulerian maps with parameter t. Then

Nieo(t) = 01(t/4) + (o1(t) — 06(£))/2, if t is divisible by 4;
Nieu(t) = (03(t) — 03(t))/2,if t is even but § is odd;
Nieu(t) = 0,if t is odd.

Proof. Here all parameters p, g, k,! are even and p = q. Hence a = p — 2
is an even divisor of ¢t and N, = 0 if ¢ is odd. If ¢ is even, each b = t/a
yields |b/2] possible choices for an even parameter k. If t is even but
not divisible by 4, then b is odd and can be chosen as any odd divisor of
t. Each such b yields (b — 1)/2 possible choices for an even k. Therefore
Nieo(t) = (0§(t) — 08(t))/2. Finally, assume that ¢ is divisible by 4. Denote
by X, the number of maps with b even and by X, the number of maps with
b odd. To compute X, write b = 2bg and obtain

Xe= Y bo=ai(t/4).
bojt/4
To compute X, write a = 4ag. Since b is odd we obtain
—da b—-1 1
Xo= Y I3 J- > l ) —5— = 5(03(t) — a5()).
2 2
bjt,bodd bjt,bodd blt,bodf:l

QED.

Proposition 14 Let Nys,(t) denote the number of edge-transitive, vertez-
transitive, face transitive, bipartite maps with parameter t. Then

Niso(t) = oo(t) — o5 (t).

Proof. In this case t = (p — 2)(k — 2) with k even. The number of such
maps equals the number of even divisors of ¢t. QED.

Proposition 15 Let Ny, (t) denote the number of edge-transitive, self-
dual maps that are vertez-, and face-transitive with parameter t. Then
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Nioo(t) =1, if t is a perfect square;
Nyso(t) =0, if t is not a perfect square.

Proof. We have ¢t = (p — 2)2. Therefore Ny, (t) = 0 if ¢ is not a perfect
square, and we have only one option for p in the perfect square case. QED.

Proposition 16 Let Ny.s,(t) denote the number of edge-transitive, vertez-
transitive, face-transitive, bipartite and Eulerian maps with parameter t.
Then

Niego(t) = 0o(t/4) if t is divisible by 4;
Niego(t) =0, if t is not divisible by 4.

Proof. We have t = (p — 2)(k — ) with both p, k even. Hence ¢ is divisible
by 4 and t = 4agby where ag is an arbitrary divisor of t/4. QED.

Proposition 17 Let Nyessv(t) denote the number of edge-transitive, vertez-
transitive, face-transitive, bipartite, Eulerian and self-dual maps with pa-

rameter t. Then ijs = Npsy = efs = Nesy = Nbefa = Npesy = Nbfsu =
Nc]s'u = Nbefsu and
Niesso(t) =1, if t is an even perfect square;
Niessu(t) =0, if t is not an even perfect square,
and all such maps are Eulerian.
Proof. In this case, t = (p — 2)?, and p is even. Therefore ¢t is an even

perfect square, and for any even perfect square ¢, parameter p can be chosen
in exactly one way. QED.
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4 A Census of edge-transitive, one-ended, 3-
connected planar maps and their growth

rates.

In the following tables the parameter y is defined by

p=1/p+1/g+1/k+1/¢

This parameter may distinguish between finite, Euclidean and hyperbolic
case, however, it is not directly related to the growth rate I,

t|a b p @ kK ¢ T

111 1 3 3 3 3 13333 0.0000
2|1 2 3 3 4 4 11667 0.0000
212 1 4 4 3 3 11667 0.0000
311 3 3 3 5 & 10667 0.0000
3115 2 3 4 4 4 10833 0.0000
312 1.5 4 4 3 4 1.0833 0.0000
3|3 1 5 5 3 3 10667 0.0000
412 2 3 5 4 4 10333 0.0000
41 2 2 4 4 3 5 1.0333 0.0000
4|1 4 3 3 6 6 10000 1.0000
4|2 2 4 4 4 4 10000 1.0000
414 1 6 6 3 3 10000 1.0000
5125 2 3 6 4 4 10000 1.0000
512 25 4 4 3 6 10000 1.0000
5§11 5 3 3 7 7 09524 2.6180
512 25 4 4 4 5 09500 2.6180
525 2 4 5 4 4 09500 2.6180
5|5 1 7 7 3 3 09524 2.6180
63 2 3 7 4 4 09762 26180
6|2 3 4 4 3 7 09762 2.6180
6|1 6 3 3 8 8 09167 3.7321
6|15 4 3 4 6 6 09167 3.7321
6|2 3 4 4 4 6 09167 3.7321
6|2 3 4 4 5 5 09000 3.7321
6|3 2 4 6 4 4 09167 3.7321
6]3 2 5 5 4 4 09000 3.7321
614 1.5 6 6 3 4 09167 3.7321
6|6 1 8 8 3 3 09167 3.7321
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7.8730
7.8730
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t a b P q k £ @ r

10 | 4 55 6 6 3 6 08333 7.8730 |
10 | 4 25 6 6 4 5 07833 7.8730
10|5 2 6 8 4 4 07917 7.8730
10]5 2 7 7 4 4 07857 7.8730
10/10 1 12 12 3 3 08333 7.8730
1155 2 3 12 4 4 09167 7.8730
11]2 55 4 4 3 12 09167 7.8730
1|1 11 3 3 13 13 0.8205 8.8875
11 ]2 55 4 4 4 11 0.8409 8.8875
1] 2 55 4 4 5 10 0.8000 8.8875
112 55 4 4 6 9 07778 8.8875
11 ]2 55 4 4 7 8 0.7679 8.8875
11|55 2 4 11 4 4 08409 8.8875
1|55 2 5 10 4 4 08000 8.8875
1155 2 6 9 4 4 0.7778 8.8875
11 155 2 7 8 4 4 07679 8.8875
111 1 13 13 3 3 08205 8.8875
126 2 3 13 4 4 09103 8.8875
1212 6 4 4 3 13 09103 8.8875
121 12 3 3 14 14 08095 9.8990
12 | 2 6 3 5 8 8 0.7833 9.8990
12| 2 6 3 5 8 8 07833 9.8990
12| 3 4 3 7 6 6 08095 9.8990
12 ] 2 6 4 4 4 12 0.8333 0.8990
12| 2 6 4 4 5 11 07909 9.8990
12 ]2 6 4 4 6 10 07667 9.8990
1212 6 4 4 7 9 0.7540 9.8990
12] 2 6 4 4 8 8 07500 9.8990
123 4 4 6 4 8 07917 0.8990
12]3 4 4 6 6 6 07500 9.8990
12 | 4 3 4 8 4 6 07917 9.8990
1216 2 4 12 4 4 08333 9.8990
12 (3 4 5 5 6 6 07333 9.8990
12|86 2 5 11 4 4 0.7909 9.8990
12 | 4 3 6 6 3 7 08095 9.8990
12 | 4 3 6 6 4 6 07500 9.8990
12 | 4 3 6 6 5 5 07333 0.8990
12|86 2 6 10 4 4 0.7667 9.8990
126 2 7 9 4 4 07540 9.8990
12]6 2 8§ 8 3 5 0.7833 9.8990
1216 2 8 8 3 5 07833 9.8990
126 2 8 8 4 4 07500 9.8990
1212 1 14 14 3 3 0.8095 9.8990

In the table one can represent the presence or absence of each of the
symbols (v, f, s, e, b) by a binary vector (with 1 signifying the presence and
0 absence of a symbol). In general there are 32 such vectors but not all
of them are possible. Here we present the list of possible tuples and the
smallest map realizing it.

Note that for edge-transitive tessellations, the following hold: vertex-
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transitive implies face-transitive or Eulerian; self-dual implies (vertex-transitive
and face-transitive) or (Eulerian and bipartite); bipartite implies (Eulerian

or face-transitive); bipartite and vertex-transitive imply Eulerian; face-
transitive and Eulerian imply vertex-transitive or bipartite. This yields
the following 13 pure types: M = 0, Mpe, My; = Mew, Msy, Mpey = Mpeo,
Mhes, bev = Mefvy Mfsm Mbefv» Mbefav = Nbefsv? where for example
M. denotes the number of edge-transitive, bipartite and Eulerian tessel-
lations that are neither vertex-transitive nor face-transitive nor self-dual.
Minimal cases of each of the pure types are given in the table below.

U T Type |
1.3333 0.0000 | My,,
1.1667 0.0000 | My,
1.1667 0.0000 | M.,y
1.0667 0.0000 | My,
1.0833 0.0000 | My,
1.0833 0.0000 | M.,
1.0000 1.0000 | Mpessew
0.9167 3.7321 | Mypeo
0.9167 3.7321 | Mpey
0.8333 58284 | Myeso
0.8333 6.8541 | M,
0.7917 9.8990 | My,

o
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Proposition 18 1. The number of pure bipartite, Eulerian tessellations
18
Mpe(t) = (t+1)oo(t)/4—01(t)/2, ift is odd, t is not a perfect square;
Mpe(t) = (t+ 1)oo(t)/4 — 01(t)/2 — VE/2 +1/2, if t is an odd perfect
square;
M (t) = t(a8(t) — 02,(t))/2 — o3(t) + a§(t), if t is even, but t/2 is
odd;
My (t) = (t/4+1)o0(t/4)+(t/2+1)o8(t)—t/202,(t) -0 (t)—201(¢/4),
if t is divisible by 4, but t is not a perfect square;
Mee(t) = (t/4 + L)oo(t/4) + (t/2 + 1)og(t) — t/202,(¢) — of(t) ~
201(t/4) — Vt/2 + 1, if t is an even perfect square;

2. The number of bipartite, face-transitive tessellations is

Mys(t) = (01(t) — 00(t))/2, if t is odd;
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Mz (t) = 01(t/2) — oo(t) + 04 (t), ift is even, but t/2 is odd;
My (t) = 01(t/2)+00(t/4)—01(t/4)—00(t)+05(t), ift is divisible by 4.
. The number of vertez-transitive, face-transitive tessellations is

My, (t) =0, ift is even;
M, (t) = oo(t), ift is odd, but t is not a perfect square;

M;i,(t) = oo(t) — 1, if t is an odd perfect square.

. The number of bipartite, Eulerian, face-transitive tessellations is
Myes(t) =0, ift is odd;
Mpes(t) = (0(t) — 08(£))/2, ift is even, but t/2 is odd;

Mies(t) = a1(t/4)+(03(t)—0d(t))/2, if t is divisible by 4, t is not a
perfect square.

Mies(t) = 01(t/4)+(0 (t)—0a8(t))/2—1, ift is an even perfect square.
. The number of bipartite, Eulerian, self-dual tessellations is

M) = L2

. The number of bipartite, face-transitive, vertex-transitive tessellations
s

Moso(t) =0, if t is odd;
Mg, (t) = 0g(t), if t is even.

. The number of face-transitive, self-dual, vertez-transitive tessellations

is
M;o(t) =1, ift is an odd perfect square;

Myeu(t) =0, if t is not an odd perfect square.

. The number of bipartite, Eulerian, face-transitive, vertex-transitive
tessellations is

Mieso(t) =0, if t is not divisible by 4;

Meepo(t) = o0(t)—0§(t)—1, ift is divisible by 4, but t is not a
perfect square;
Myeso(t) = oo(t) — og(t) — 2, if t is an even perfect square.
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9. The number of bipartite, Eulerian, face-transitive, self-dual, vertez-
transitive tessellations is

Mpefsy = Npegso(t) =1, ift is an even perfect square;
Myesso = Noegsu(t) =0, if t is not an even perfect square.
Proof. These formulas can be derived from the formulae for the N’s using
the inclusion-exclusion principle. For example, My, = Npe — Npey — Npes —

Nbcv +Nbcfa +Nbefv + Npesv _Nbej.w = Npe _2Nbef _Nbes +Nbefs +Nb¢fv
and the result follows. QED.
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Remark 19 There are nine edge-transitive finite planar maps and there
are ezactly 5 edge-transitive tessellations in the Buclidean plane, depicted
in Figure 4.

p g k £ pu Polyhedron

3 3 3 3 1.3333 | tetrahedron

3 3 4 4 1.1667 | cube

4 4 3 3 1.1667 | octahedron

3 3 5 5 1.0667 | dodecahedron

3 4 4 4 1.0833 | rhombic dodecahedron

4 4 3 4 1.0833 | cuboctahedron

5 5 3 3 1.0667 | icosahedron

3 5 4 4 1.0333 | rhombic triacontahedron
4 4 3 5 1.0333 | icosidodecahedron
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