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Abstract

Let G = (V,E) be a graph. A subset S of V is called an equiv-
alence set if every component of the induced subgraph (S) is com-
plete. In this paper starting with the concept of equivalence set as
seed property, we form an inequality chain of six parameters, which
we call the equivalence chain of G. We present several basic results
on these parameters and problems for further investigation.
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1 Introduction

By a graph G = (V, E) we mean a finite, undirected and connected graph
with neither loops nor multiple edges. The order and size of G are de-
noted by n and m respectively. For graph theoretic terminology we refer
to Chartrand and Lesniak [5].

One of the major areas in graph theory is the study of domination and
related subset problems such as independence, irredundance, covering and
matching. An excellent treatment of fundamentals of domination in graphs
is given in the book by Haynes et al. [12]. Surveys of several advanced
topics in domination are given in the book edited by Haynes et al. [13].

Let G = (V,E) be a graph. Let v € V. The open neighborhood of v
denoted by N(v) and the closed neighborhood of v denoted by N{v] are
defined by N(v) = {u € V : uv € E} and N{v] = N(v)U{v}. A subset S of
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V is said to be an independent set if no two vertices in S are adjacent. A
subset S of V is called a dominating set if every vertex in V — S is adjacent
to at least one vertex in S. A subset S of V is called an irredundant set if
for every vertex v € S there exists a vertex w such that Njw]N S = {v}.
The above concepts of independence, domination and irredundance lead to
the following six parameters:

i(G) = min{|S| : S is a maximal independent set in G},
Bo(G) = maz{|S] : S is an independent set in G},
¥(G) = min{|S| : S is a dominating set in G},
[(G) = maz{|S| : S is a minimal dominating set in G},
ir(G) = min{|S| : S is a maximal irredundant set in G} and
IR(G) = maz{|S] : S is an irredundant set in G}.
These parameters are respectively called independent domination number,
independence number, domination number, upper domination number, ir-
redundance number and upper irredundance number. We see that the max-
imality condition for an independent set is the definition of dominating set
and the minimally condition for a dominating set is the definition of irre-

dundant set. Cockayne et al. [6] established the following inequality chain
which is now known as the domination chain.

Theorem 1.1. [6] For any greph G, ir(G) < 7(G) £ i(G) £ Bo(G) <
I'(G) £ IR(G).

Definition 1.2. Given an integer sequence 1 <a<b<c<d<Le<f,
if there exists a graph G such that a = ir(G),b = ¥(G),c = i(G),d =
Bo(@),e =T(G) and f = IR(G), then (a,b,c,d, e, f) is called a domination
sequence.

Cockayne et al. [7] completely characterized the domination chain.

Theorem 1.3. (7] A sequence a,b,c,d, e, f of positive integers is a dom-
ination chain if and only if :

l.a<b<Lc<Ld<Lel,
2. a =1 implies that c = 1,
3. d =1 implies that f =1 and

4. b<2a-1.
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The domination chain has been extended further by introducing two
more parameters called the external redundance number er(G) and the
upper external redundance number ER(G), leading to the following chain:

er(G) < ir(G) £ 7(G) £ i(G) < Bo(G) < T(G) < IR(G) < ER(G).

This is called the eztended domination chain of G and we refer to [8] for
further details.

An equivalence graph is a vertex disjoint union of complete graphs. An
equivalence covering of a graph G is a family of equivalence subgraphs of
G such that every edge of G is an edge of at least one member of the fam-
ily. The equivalence covering number of G is the cardinality of a minimum
equivalence covering of G. The equivalence covering number was first stud-
ied in [9]. Interesting bounds for the equivalence covering number in terms
of maximal degree of the complement were obtained in [2]. The computa-
tion of the equivalence covering number of split graphs was considered in
4].

An important concept which uses equivalence graph is subcoloring stud-
ied in [14, 1, 11]. A subcoloring of G is a partition of its vertex set into
subsets X, X3,..., Xk, where for each ¢ < k the induced subgraph (X;)
is an equivalence graph. The order of a minimum subcoloring is called
the subchromatic number of G. The notion of subchromatic number is a
natural generalization of the well studied chromatic number since for any
independent set S, the induced subgraph (S} is trivially an equivalence
graph.

The concept of equivalence graph also arises naturally in the study of
domination in claw-free graphs, as shown in the following theorem which

was proved in [10].

Theorem 1.4. [10] Let D be a minimal dominating set of vertices in a
K, 3-free graph. Then D is a collection of disjoint complete subgraphs.

Motivated by these observations, we have introduced the concept of
equivalence set in [3].

Definition 1.5. [3] Let G = (V, E) be a graph. A subset S of V is called an
equivalence set if every component of the induced subgraph (S) is complete.

The concept of an equivalence set is a natural generalization of the con-
cept of independence, since every independent set is obviously an equiv-
alence set. Haynes et al. [12, Page 286] have suggested that almost any
property such as vertex cover, packing, (S) is acyclic etc. can be used as
a seed property to generate an inequality chain. In this paper we use the
concept of equivalence as seed property and form an inequality chain of six
parameters which we call the equivalence chain of G. We present several
basic results on these parameters and problems for further investigation.
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2 The Equivalence Chain

The concept of equivalence set is obviously a hereditary property and hence
an equivalence set S is maximal if and only if it is 1-maximal.

Definition 2.1. [3] The eguivalence number Be,(G) and the lower equiva-
lence number i.q(G) are defined by

Beq(G) = max{|S| : S is an equivalence set of G} and
ieq(G) = min{|S| : S is a maximal equivalence set of G}.

Let S be an equivalence set in G and let v € V —S. If v is not dominated
by S, then S U {v} is also an equivalence set and hence it follows that any
maximal equivalence set is & dominating set.

Proposition 2.2. Let S be an equivalence set in G. Then S is a mazimal
equivalence set if and only if for everyv € V — S, there exist two vertices
u,w € S such that the induced subgraph ({u,v,w}) is isomorphic to Ps.

Proof. Let S be a maximal equivalence set and let v € V —S. Then SU{v}
is not an equivalence set and hence (S U {v}) contains a component which
is not complete. This component contains P; as an induced subgraph and
v € V(P3). Conversely, if S is an equivalence set in G satisfying the given
condition, then for every v € V — S, (SU {v}) contains a component which
is not complete. Hence S U {v} is not an equivalence set. Thus S is a
maximal equivalence set. ]

Definition 2.3. A subset S C V is said to be an eg-dominating set of G if
for every v € V — S, there exist two vertices u,w € § such that the induced
subgraph ({u,v,w}) is isomorphic to Ps.

Clearly eq-domination is a super hereditary property and hence an eg-
dominating set S is minimal if and only if S is 1-minimal.

Definition 2.4. The eg-domination number v.,(G) and the upper eg-
domination number T'¢q(G) are defined by

Yeq(G) = min{|D| : D is a minimal eg-dominating set of G} and
I'eq(G) = max{|D]: D is a minimal eg-dominating set of G}.

Proposition 2.5. Every mazimal equivalence set S of a graph G is a min-
imal eq-dominating set of G.

Proof. 1t follows from Proposition 2.2 that S is an eg-dominating set of G.
Now let v € S and let C be the component of (S) which contains v. Let
u,w € S — {v}. If both u,w are in C, then ({u,v,w}) is isomorphic to K,
and in other cases ({u, v, w}) is isomorphic to KUK or K3. Thus S—{v}
is not an eg-dominating set of G, so that S is a minimal eg-dominating set
of G. a
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Corollary 2.6. For any graph G, Yeq(G) < ieq(G) < Peg(G) £ Teq(G).

Proposition 2.7. Let S be an eq-dominating set of G. Then S is a minimal
eg-dominating set if and only if for every u € S, there exists a vertex
v €V — (8 — {u}) such that in the induced subgraph ((S — {u}) U {v}), the
component containing v is complete.

Proof. Let S be a minimal eg-dominating set of G and let u € S. Then
S — {u} is not an eg-dominating set and hence there exists a vertex v €
V —(S—{u}) such that for any two vertices v/, u” € S, the induced subgraph
({v/,u”,v}) is not P3. Now, let G; be the component of {(S — {u}) U {v})
that contains v. If there exists a vertex w € V(G;) such that w is not
adjacent to v, let P = (v,u),uy,...,w) be a shortest v — w path in Gj.
Then ({v,u1,u2}) & Ps, which is a contradiction. Thus v is adjacent to
every vertex in G;. Now if there exist two nonadjacent vertices vy, v; in
Gy, then ({v,v1,v2}) = P;, which is again a contradiction. Hence G is
complete. The converse is obvious. O

Definition 2.8. A subset § C V is said to be an eg-irredundant set of
G if for each vertex u € S, there exists v € V — (S — {u}) such that in
the induced subgraph ((S — {u}) U {v}), the component containing v is
complete.

Clearly eg-irredundance is a hereditary property and hence
an eg-irredundant set S is maximal if and only if S is 1-maximal.

Proposition 2.9. Every minimal eq-dominating set is a mazimal
eg-irredundant set.

Proof. Let S be a minimal eg-dominating set. By proposition 2.7, S is eg-
irredundant. Suppose S is not maximal eg-irredundant. Then there exists
a vertex u € V — § such that S; = S U {u} is eg-irredundant. Hence there
exists v € V — (S — {u}) = V — S such that in the induced subgraph
(S U {v}), the component containing v is complete. Hence for any two
vertices z,y € S the induced subgraph ({v,z,y}) is not a path, so that S
is not an eg-dominating set of G, which is a contradiction. O

Definition 2.10. The eg-irredundance number ir.q(G) and the upper eg-
irredundance number I R.,(G) are defined by

ireq(G) = min{|D| : D is a maximal eg-irredundant set of G} and
IR¢(G) = max{|D| : D is a maximal eg-irredundant set of G}.

Since every minimal eg-dominating set is a maximal eg-irredundant set, we
have the following inequality chain:
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Theorem 2.11. For any graph G, we have
ireq(G) < Veq(G) < ieq(G) < Beg(G) < Teg(G) < IReg(G).
This inequality chain is called the equivalence chain of G.

Definition 2.12. Given an integer sequence 2 < a £ b < c < d <
e < f, if there exists a graph G such that a = ir¢q(G),b = 7,(G),c =
ieq(G),d = Peq(G), € =T¢g(G) and f = IRey(G), then (a,b,c,d,e, f) is
called an equivalence sequence.

Example 2.13.

1. For any integer n > 2 the sequence 7 = (n,n,n,n,n,n) is an equiv-
alence sequence, since for the graph G = K,,, we have ire; = 7.4 =
teq = Beq = Teq = IReq = n. We observe that the sequence  is the
domination sequence of the graph G = K.

2. The sequence (2,2,2,b,b,b) is an equivalence sequence, since for the
graph G = K,p,2 < a < b, we have iT¢q = Yeq = feqg = 2 and
Beq = Teqg = IReq = b. Also the above sequence is the domination
sequence of the graph G = Kzp.

Observation 2.14. Since ir.4(G) > 2 for any graph G with n > 2, it
follows that any domination sequence (a,b,c,d, e, f) with a = 1 is not an
equivalence sequence. Hence the following problem naturally arise.

Problem 2.15. If 7 = (a,b,c,d,e, f) is an equivalence chain of a graph
G, does there exist a graph Gy such that 7 is a domination sequence of G1?

We now proceed to obtain an extension of the equivalence chain.

Definition 2.16. Let G = (V,E) be a graph, SCV and u € S. A vertex
v is said to be an eg-private neighbor of u with respect to S if in the induced
subgraph ((S — {u}) U {v}), the component containing v is complete.

Observation 2.17. The set of all eg-private neighbors of u with respect
to S is denoted by preq[u, S]. It follows from the definition that S is an eg-
irredundant set if and only if every vertex u € S has at least one eg-private
neighbor, or equivalently pneg(u, S] # @ for all u € S. Now for any subset
S of V, let pneqo(S) = {v € S : pney(v, S) # 0}. The eq-private neighbor
count of S is defined by pncey(S) = [pneq(S)|. Thus § is eg-irredundant
if and only if pnceq(S) = |S|. Also an eg-irredundant set S is maximal if
and only if SU {u} is not eg-irredundant for every « € V' — S. Hence there
exists at least one w € SU {u} such that w does not have an eg-private
neighbor with respect to S. Thus if we add any vertex in V' —-§ to a maximal
eg-irredundant set S, the eg-private neighbor count will not increase.

Thus an eg-irredundant set S is maximal if and only if pne.(SU{w}) <
pnceg(S) forallw e V - 8S.
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Definition 2.18. A subset S C V is said to be an external eq-redundant
if for every v € V — S such that pnceg(S U {v}) < pnceg(S). The external
eg-redundance number ereq(G) and upper external eg-redundance number
ER.y(G) are defined to be the minimum and maximum cardinalities of a
minimal external eg-redundant set S in G.

Lemma 2.19. Every mazimal eq-irredundant set S is a minimal
eg-external redundant set.

Proof. It follows from Observation 2.17 that S is external eg-irredundant.
Now let 5y be a proper subset of S and let w € S—5;. Since eg-irredundance
is a hereditary property, it follows that S; and S; U {w} are both eg-
irredundant. Hence priceq(S1 U {w}) = [S1]| + 1 = pncey(S1) + 1, so that
PNiCeq(S1 U {w}) > pnceq(S1). Thus S is not external eg-redundant and
hence S is a minimal external eg-redundant set. O

As a consequence we have the following:

Theorem 2.20. For any graph G, we have ereq(G) < ireg(G) < Yeq(G) <
teq(G) < Beq(G) S T'eq(G) < IReq(G) < ERy(G). This ineguality chain is
called the extended equivalence chain of G.

3 Complexity Results

In this section we prove that the decision problems corresponding to the
parameters ieq, Yeq; feq: Beqs I'eq aNd I Req are NP-complete. The reduction

is from 3-SAT.

3-SAT

INSTANCE: A set X = {z;,22,...,%,} of variables and a set C =
{C1,Ca,...,Cs} of 3-element sets called clauses, where each clause C; con-
tains three distinct occurrences of either a variable z; or its complement
zl

dUESTION ¢ Does C have a satisfying truth assignment?

EQUIVALENCE SET (EQ)
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a maximal equivalence set S with |S| < k?

e¢-DOMINATING SET (EQD)

INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have an eg-dominating set S with |S| < k?
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eq-IRREDUNDANT SET (EQIR)
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a maximal eg-irredundant set S with |S| < k?

Theorem 3.1. The decision problems EQ, EQD, EQIR sets are
NP-complete.

Proof. Clearly EQ, EQD and EQIR are in NP. We first prove EQ is NP-
complete. Given an instance C of 3-SAT, we construct an instance G of EQ
as follows: for each literal z; we take a copy of G; with its vertices labeled
as in Figure 1. For each clause C; we add a vertex C; to the three literals

which are in the clause C;. Let k = 2r.

24
Y v
T 1:2
G;
Figure 1

Suppose C has a satisfying truth assignment. Let D be the set consisting
of all literals z; or z} which are assigned the value true along with the
corresponding vertex y; or yi. Clearly each component (D) is K, and
hence D is an equivalence set in G. Since each clause C; contains a true
literals say z;, it follows that ({zi,¥i,C;}) = P;. Also each vertex of G;
which is not in D along with a corresponding copy of K in (D) forms a
P;. Thus D is a maximal equivalence set in G and |D| =2r = k.

Conversely, suppose G contains a maximal equivalence set D with |D| <
2r. Since D is a maximal equivalence set, it follows that D contains at
least two vertices from each G; and D contains no clause vertex C;. Since
|D] < 2r, it follows that D contains exactly two vertices from each G;.
If DNV(G;) = {z:,z}}, then DU {2;} is an equivalence set, which is a
contradiction. Also if both z;,z} ¢ D, then |DNV(G;)| = 3, which again a
contradiction. Hence exactly one of z; or zj is in D. Now for each variable
z;, we assign the value True if x; € D and the value False otherwise. Now
if clause C; does not contain any true literal, then C; is not adjacent to any
vertex in D and hence D U {C;} is an equivalence set, which contradicts
the maximality of D. Thus each C; contains a true literal.

We now prove EQD is NP-complete. By using the same reduction given
in the proof of EQ. If C has a satisfying truth assignment, then the set D



constructed in the proof of EQ is a maximal equivalence set and hence it
follows from Proposition 2.5 that is a minimal eg-dominating set.

Conversely, suppose G has a eg-dominating set with |D| < 2r. Since
D is a eg-dominating set, it follows that D contains at least two vertices
from each G;. Since |D| < 2r, it follows that D contains exactly two
vertices from each G; and D contains no clause vertices. If DN V(G;) =
{zi,zi}, {zi, 4} {20, 9} or {yi,4(}, then z is not eg-dominated by D,
which is a contradiction. Thus D NV(G;) = {z;,y:} or {z!,y!} and hence
D contains exactly one of z; or z; and the truth assignment as given in the
proof of EQ gives a satisfying truth assignment for C.

We now prove EQIR is NP-complete. By using the same reduction given
in the proof of EQ. If C has a satisfying truth assignment, then the set D
constructed in the proof of EQ is a maximal equivalence set and hence
it follows from Proposition 2.5 and Proposition 2.9 that is a maximal eg-
irredundant set. The proof for the converse is similar to that of the proof

of EQD. |

Corollary 3.2. Given a graph G, the problems of deciding whether
eg(G) = 7eq(G) = ieq(G) 07 ireg(G) = Yeq(G) 0r Yeq(G) = ieq(G) are
NP-complete.

UPPER EQUIVALENCE SET (UEQ)
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a maximal equivalence set S with |S| > k?

UPPER e¢g-DOMINATING SET (UEQD)
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a minimal eg-dominating set S with |S| > k?

UPPER eq-IRREDUNDANT SET (UEQIR)
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a maximal eg-irredundant set S with |S] > k7

Theorem 3.3. The decision problems UEQ, UEQD, UEQIR sets are NP-
complete.

Proof. Clearly the decision problems UEQ, UEQD, UEQIR are in NP. We
first prove the theorem for UEQ is NP-complete.

Given an instance C of 3-SAT, we construct an instance G of EQ as
follows: for each literal x; we take a copy of G; with its vertices labeled as
in Figure 2. For each clause C; we add a vertex C; and join it to the three
literals which it contains. Let k = 9r.
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We claim that C has a satisfying truth assignment if and only if G has
a maximal equivalence set D with |D| > 9r. Suppose C has a satisfying
truth assignment. Let D be the set consisting of all literals z; or z; which
are assigned the value true along with the corresponding vertices {y;, 2;}
or {y/, 2!} and {a;, bi, ¢;, a}, b, c;}. Clearly each component in (D) is K> or
K and hence D is an equivalence set in G. Since each clause C; contains
a true literal say z;, it follows that ({z;,a;,C;}) & P;. Also each vertex of
G; which is not in D along with a corresponding copy of K2 in (D) forms
a P3. Thus D is a maximal equivalence set in G and |D| =9r = k.
Conversely, suppose G contains a maximal equivalence set D with |D| >
9r. Clearly D contains at most 9 vertices from each G;. Since |D| > 9r,
it follows that D contains exactly 9 vertices from each G; and D contains
no clause vertex C;. Thus |D| = 9r. If both z;,z} are not in D or if both
z; and z} are in D, then [DNV(G;)| <9, which is a contradiction. Hence
exactly one of z; or z} is in D. Now for each variable x;, we assign the
value True if z; € D and the value False otherwise. Since D is a maximal
equivalence set it follows that C; is adjacent to a vertex of D and hence
contains a true literal.
The same reduction also shows that UEQD, UEQIR are NP-complete.
|

Corollary 3.4. Given a graph G, the problems of deciding whether
ﬂeq(G) = I'eq(G) = IR¢y(G) or Beq(G) = Teg(G) or Teq(G) = IRey(G)
are NP-complete.

4 Conclusion and Scope

In this paper, starting from the concept of equivalence set we have con-
structed two inequality chains of parameters namely, the equivalence chain
and the extended equivalence chain. These parameters might have rela-
tionships to other parameters studied in the literature. We mention a few
such problems for further investigation.
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Problem 4.1. We have eight eq-parameters in the ertended equivalence
chain and the corresponding eight parameters in the extended domination
chain. Does there exist any relation between an eq-parameter and the cor-
responding classical parameter?

Problem 4.2. It has been proved that for many classes of graphs, including
bipartite graphs, chordal graphs, circular arc graphs, cographs and permu-
tation graphs, just to name a few, fo(G) = I'(G) = IR(G) [12, Page 81).
Is a similar result true for the upper eq-parameters?

Problem 4.3. Obtain a characterization for an integer sequence 2 < a <
b<c<d<e< f to be an equivalence sequence of a graph.

Problem 4.4. We have proved that the decision problems corresponding
to the various eq-parameters are NP-complete. Develop efficient algorithms
for computing these parameters for special classes of graphs.

Problem 4.5. Is every equivalence sequence a domination sequence?
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