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Abstract

A complete solution is obtained for the possible number of com-
mon entries between two latin squares of different given orders. This
intersection problem assumes the entries of the smaller square are
also entries of the larger, and that, for comparison, the smaller square
is overlayed on the larger. However, these extra restrictions do not
affect the solution, apart from one small example.

1 Introduction

A partial latin square L of order n and entry set E, |[E| =n,isann xn
array in which

e every cell of L is either empty or contains an element of E, and

e every row and every column of L contains no repeated elements of E.

More importantly, a latin square is a partial latin square with no empty
cells. Every row and every column is a permutation of F in this case.
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A partial latin square L can be identified with a subset of the ordered
triples R x C x E, where R indexes the rows, C indexes the columns, and
(r,c,e) € L if and only if the (r,c)-entry in L is e. In this representa-
tion, no ordered pair appears in the same two coordinates more than once.
For instance, one of the two latin squares with R = C = E = {1,2} is
{(1,1,1),(1,2,2),(2,1,2),(2,2,1)}.

In what follows, the ‘array’ and ‘ordered triple’ representations are used
interchangeably. The set of row indices of L is here denoted rows(L), and
similarly for columns (cols) and entries (ents).

Given two partial latin squares L and L' on the same set of rows,
columns and entries, regard their intersection L N L’ as the set of com-
mon entries in common cells, or, alternatively as the set of common triples.

Define the intersection spectrum for latin squares of order n as

L, L’ are latin squares of order n, rows(L) = rows(L’) }

1 = {0zt cols(L) = cols(L/),ents(L) = ents(L)

Since every row and column needs to be represented either zero or at least
twice in the difference L\ L', it follows that
I(n) C T(n) :={0,1,2,...,n%}\ {n? —i:i=1,2,3,5}. (1)

The complete determination of I(n) is an important result due to Fu and
Fu.

Theorem 1.1 ((3]).

{1} ifn=1;
{0,4} if n=2
I(n) = ¢ {0,3,9} if n=3;
{0,1,2,3,4,6,8,9,12,16} if n = 4;
T(n) if n>5.

In [2], a two-parameter version of this problem was introduced. Let L,
be a latin square of order n and L. a latin square of order m > n. Assume
the sets of rows, columns and entries of L, contain the corresponding sets
for L;. In this way, L; and L, are partial latin squares on the same m rows,
columns, and entries. For such squares, define Ly N L, to be the intersection
as partial latin squares, and let

L, order n, Ly order m,rows(L;) C rows(Lg),}

I(n, 'rn) = {lLl N L2| : cols(L1) C COlS(L;[),entS(Ll) - ents(Lz)
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Example 1.2. The reader is encouraged to verify that I(2,3) = {0, 1, 3}.
Probably the least obvious fact is that 2 & (2, 3), but two easy cases (either
adjacent or diagonal intersecting cells) rule this out.

Since they occur frequently in what follows, intervals of integers are
represented in the usual way:

[,8] :={z€Z:a<z<B}.

From Ryser’s theorem on completing partial latin squares (see Theo-
rem 2.1 below), it is straightforward to see that I(n,m) = [0,n2] when
m > 2n. In light of this and Theorem 1.1, the focus is on I(n,n + k),
0 < k < n. In [2], it was shown that the maximum intersection in this
case is n2 — nk + k2, obtained when L, of order n is ‘quasi-embedded’ (i.e.
completed after a minimum number of cells are emptied) in Ly of order
n + k. One has

I(n,n+ k) C [0,n% — nk + k?), (2)

and equality is easily seen to hold in many cases. The results in [2] fall
short of reducing the determination of all /(n,n + k) to a finite problem.
The difficult cases are observed to be small k for certain large intersections.

This article completely settles the intersection problem for latin squares
of different orders.

Theorem 1.3. Let n > k be positive integers. Then

{0,1,3} if (n, k) = (2,1);
[0,n2 — nk + k?] otherwise.

I(n,n+k)={

The reduction to a finite problem appears in Section 2, and is divided
into two broad cases: k > 2 and & < 2. In the latter case, four constructions
suffice. The proof of Theorem 1.3 is then completed by an easy computer
search. The details of this search are given in Section 3.

As an aside, consider ‘unrestricted’ intersections between latin squares
Ly, Ly of different orders, where the condition

ents(L;) C ents(Lz) (3)
is dropped. To this end, define
I,(n,m) = {|L1 N Ly| : Ly order n, Ly order m}.
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Then obviously
I(n,m) C I,(n,m) C [0,n® — nk + k2,

and by Theorem 1.3 I, is settled except for one easy case. (Likewise,
Theorem 1.1 is not substantially impacted by dropping condition (3).) Due
to squares

3 2 4
2 4 3

2
1 and

1
2

4 3 2
it follows that 2 € I,,(2,3). Compare with Example 1.2.

Corollary 1.4. For positive integers n > k, I,(n,n+k) = [0,n% —nk+k?).

2 Proof for sufficiently large orders

Before moving on to details of the proof, it is worth mentioning a standard
approach for obtaining some desired intersection. This is relevant both
for theoretical constructions and small examples on computer. Recall the
following important result on completing rectangles to latin squares.

Theorem 2.1 (Ryser's Theorem, [6]). Suppose L is a partial latin square
of order n in which a cell is filled if and only if it lies in the first r rows
and s columns. If each symbol appears at least r + s — n times in L, then
L can be completed to a latin square of order n.

In this context, if L is an n X n array on n + k symbols, and such that
each symbol appears at least n — k times, then L can be completed to a
latin square L of order n + k. Constructing L from an initial square L,
of order n by modifying z entries results in intersection value |L) N Ly| =
|LinL|=n%-z.

A key technique for entry modification is substitution along transversals.

Recall that a transversalin a (partial) latin square L is a subset of triples
(,c, €) which exhaust the rows, columns, and entries of the square. In a
partial transversal, the requirement is weakened so that no row, column, or

entry is repeated.

The existence of an orthogonal mate to L is enough to guarantee n dis-
joint transversals in L. It is also known that there are 4 disjoint transversals
in certain latin squares of order six. See [1] for more information on or-
thogonality and transversals.
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In any case, if T3,...,T} are disjoint (partial) transversals of L, then
replacing n — k of the entries in each transversal T; with a new symbol oo;
results in a Ryser-completeable partial latin square of order n + k. This
proves the existence of a quasi-embedding and shows that n? — nk + k2 ¢
I(n,n+k). In fact, replacing up to all n entries on each of & full transversals
settles the top piece of the intersection spectrum.

Lemma 2.2 ([2]). Forn > 6, I(n,n+ k) 2 [n? — nk,n? — nk + k2.

The condition n > 6 in Lemma 2.2 ensures that k disjoint transversals
exist, though in fact the conclusion holds unless (n, k) = (2,1) or (6, 5).

21 k>2

This section borrows two further techniques from [2]: permuting rows and
imposing latin subsquares. However, these get combined in somewhat more

generality.

It is clear what is meant by saying that one latin square is a subsquare
of another. A related notion is a partial latin square L° whose only empty
cells form a ¢ x t sub-array, and the rows and columns of that sub-array in
L° avoid precisely the same set of ¢ entries. This object is usually called
a (partial) latin square having a hole of size t. For instance, the square of
order 5 below has a hole of size 2.

o B W
W Ot
=N O s W
BN W U
B =D WO

Obviously, if M is a t x ¢ latin square on the missing rows, columns, and
entries, then L = L° U M is a latin square having M as a subsquare.

Define I(n,n+k;t) to be the set of all intersection sizes |L$ N L3|, where

e L3 is a latin square of order n with a hole of size ¢;
e L3 is a latin square of order = + k with a hole of size ¢; and

o the holes of L{ and L3 are on the same rows, columns and entries.

By the above remark,

I®)+ I(n,n+k;t) C I(n,n+ k). 4)
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Of course, the sum of two sets of integers is to be interpreted in the usual

way:
A+B={a+b:a€ Abe B}.

Now, a key technical lemma combines transversals and permutations to
obtain a mesh of values in I(n,n + k;t).

Lemma 2.3. Let t > 2 and suppose n > 3t. Then I(n,n + k;t) contains
0, n? — nk + k2 — t2, and has no gap of size greater than 2(n —t).

Proof: By a result of Heinrich, [4], the hypotheses guarantee that there
exist orthogonal latin squares of order n having common holes of order ¢.
For ease of reference, the holes are assumed in the upper-left corner.

By orthogonality, one of these partial latin squares ~ call it L® — has n
disjoint partial transversals T}, ..., T, with (say) the first n — ¢ being full
transversals and the last ¢ being of size n —¢.

Consider the first k (partial) transversals T1,...,Tx. Replace then —k
entries in rows k + 1 through n in each T;, i = 1,..., k, with new symbol
[e oF N :

It must be verified that this is possible. Observe that if £ < ¢ then
k<n-tand T1,...,Ti are all full. On the other hand, if k¥ > ¢, then
n—~k < n—t. In either case, we have enough available entries on T3, ..., T}
for the above replacement.

Each symbol, old and new, appears at least n — k times. So by Ryser’s
Theorem, extend to a partial latin square L§ of order n+k. (To be precise,
one must fill the upper-left hole with a subsquare of order ¢, Ryser-complete,
and remove the subsquare.)

Now, return to L° and apply certain row-permutations =, leaving rows
1 through ¢ invariant (but not necessarily fixed). There are between zero
and n — 2 fixed rows, or all n rows fixed. Call such a partial latin square
L3. By construction, L§ and L3 have common holes of size .

If no rows are fixed by m, then |L{ N L3| = 0. If all rows are fixed, then
|LS N L§| achieves its maximum at n? — nk + k% — t2. Otherwise, count
|L$ N L§| row by row. Each row of L that is fixed by 7 contributes n — ¢,
n -k, n—k —t, or n to the intersection with L3, depending (respectively)
on whether that row is among the first ¢ rows, last n — k rows, both, or
neither. Varying the number and location of fixed rows (with n — 1 fixed
rows disallowed) prevents gaps of size greater than 2(n —t) in I(n,n+k;t).
a
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The above constructions go a long way toward solving the problem.

Proposition 2.4. Forn > 20 and2 < k < n, I(n,n+k) = [0,n%—nk+k2?].

Proof: Pick t = | 3] > 6. It can be easily verified that 2(n —t) < t? — 6.
By (4), Theorem 1.1 and Lemma 2.3, it follows that I(n,n + k) contains
all but possibly four values n? — nk + k% — j,  =1,2,3,5. But Lemma 2.2
covers these for k > 2. 0

Actually, values of n < 20 yield partial results too. Often only a few
intersection values are left undecided. For instance, it turns out that for
n = 15 (and any k > 2) the entire interval is obtained with ¢ = 5.

Note that this method also settles £ = 2, except for the intersection
value n? —nk + k% -5 =n2—-2n -1, and k = 1, except for 3 values for
each n. These low values of k are treated next.

22 kL2

As indicated earlier, the proof of Proposition 2.4 applies for k < 2, except
that the interval in Lemma 2.2 misses a few intersection values. For k = 1,
these aren? —n—4,n2-n—2,andn? —n—~1.

Lemma 2.5. Forn>6,n?—n—4€ I(n,n+1).

Proof: As in the proof of Lemma 2.3, there exists a latin square L{ of order
n having a hole of order 2 and a disjoint (full) transversal T. Replace all
n entries of T’ with new symbol oo, and complete to a latin square L3 of
order n + 1. (This is also known as a ‘prolongation’ along T'.) It follows
that |L$ N Lg| = n? —n — 4. Applying (4) with disjoint subsquares of order
2 results in the desired intersection of latin squares. o

Lemma 2.6. Forn>6,n?—n—-2¢ I(n,n+1).

Proof: Take alatin square L of order n having a 2x 2 subsquare and a partial
transversal T of order n — 1 that intersects the subsquare in exactly one
entry. (This exists either from Heinrich’s Theorem, or alternatively from a
prolongation along 2 transversals in a square of order n — 2.) Replace all
n — 1 entries of T with new symbol oc, and Ryser-complete to L. Then
|L N Lg| = n? —n + 1. Now, turn the 2 x 2 subsquare in L to produce L.
This reduces the intersection by exactly 3, yielding |L; N La| = n2 —n — 2,
as desired. o
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The remaining value requires a similar yet slightly more intricate con-
struction.

Lemma 2.7. Forn>9,n?2-n—-1€I(n,n+1).

Proof: Take a latin square L; of order n having a 3 x 3 subsquare on
entries {1,2,3} and a partial transversal T of order n — 1 that intersects
the subsquare in exactly 2 cells. Replace all entries of T' with new symbol
00, and Ryser-complete to L. With minor changes it may be assumed that
the subsquare in L, and corresponding entries of L3 are

1 2 3 oo 2 3
2 3 1|(and |2 oo 1],
3 1 2 1 3 2

respectively. Note that these squares have intersection 5 = 32 —4. It follows
that |Ly N Ly|=n*—-(n-3)—4=n?-n-1 0

In summary, Lemmas 2.5, 2.6, 2.7 and the construction in Section 2.1
completely settle the case k = 1 for large n.

Proposition 2.8. Forn > 20, I(n,n+1) = [0,n? —n +1].

The only presently outstanding intersection value for k = 2is n?—2n—1.
This is handled with another hole of size 2.
Lemma 2.9. Forn>6,n%2—-2n—-1€ I(n,n+2).
Proof: This mirrors the proof of Lemma 2.5. Take a latin square L} of
order n having a hole of order 2 and a two disjoint (full) transversals T}, T5.
Replace n — 1 entries of T} with new symbol oo, n — 2 entries of T2 with
009, and complete by Ryser’s Theorem to L3 of order n+ 1 with a common

hole. It follows that [L{NL§| =n?—(n—1)—(n—-2)—4=n?—-2n—1
and disjoint subsquares in the hole complete the construction. (]

So k = 2 is now finished for large n.

Proposition 2.10. For n > 20, I(n,n+2) = [0,n% — 2n + 4].

3 Computation for small orders

It remains to determine I(n,n + k) for positive integers k < n < 20. Al-
though techniques from the previous section yield partial results for n < 20,

296



it seems reasonable to simply compute all I(n, n+k) directly. This is guided
by a hunch that equality holds in (2) provided (n, k) # (2,1), and that ex-
amples of each allowable intersection are plentiful. Indeed, this is the result
of our computation.

Proposition 3.1. For3<n<20and1 <k <n, I(n,n+k) =[0,n% ~
nk + k?|.

The computation has an outer loop on n and k. For fixed (n, k), ini-
tialize latin squares MY and M7 as disjoint of orders n and n + k, respec-
tively. (This is easy.) Store the pair (M, MJ) for intersection zero. Put
unachieved := [1,n? — nk + k?|.

Repeat the following: Identify the longest gap in unachieved, and the
intersection value i preceding this longest gap. Suppose (M}, M3) has been
stored for intersection i. Repeatedly construct latin squares L;, Lo of orders
n and n + k by applying the algorithm of Jacobson and Matthews [5] with
respective seeds M}, M. Although the limiting distribution of L; (likewise
L2) is uniform, we stop the latin square algorithm relatively soon, so that
|M} N Lj| is large. Finally, if h := |L1 N Ly| € unachieved, delete it and
store (Ly, L2) as (M}, M}) for intersection h.

This implentation in C on an AMD Athlon (1.1 GHz, 256 Mb RAM,
running Cygwin) took roughly 22 hours and 17 minutes to construct all

20 n-—-1
> ) n?—nk+k+1=234101
n=3 k=1

pairs‘ of latin squares achieving all intersection values. A complete file of
these intersection values, measuring 6.1 Mb, is available for download at
http://www.math.uvic.ca/faculty/dukes/int-1s-data.gz.

The proof of Theorem 1.3 now follows directly from Example 1.2 and
Propositions 2.4, 2.8, 2.10, and 3.1.

Once again, it should be stressed that most of the direct constructions
can be easily obtained without computer. Those cases for which the com-
puter is useful probably admit nicer computational techniques. However,
for ease of presentation we choose to draw the line at n = 20 and outline
the simple algorithm above.
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