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This paper is dedicated to Ralph Stanton, a visionary; he was

always encouraging young mathematicians, and was a catalyst

for the establishment of combinatorics as a substantive branch
of mathematics.

Abstract

Clatworthy described the eleven group divisible de-
signs with three groups, block size four, and replication
number at most 10. With these in mind one might ask:
Can each of these designs be generalized in natural ways?
In two previous papers the existence of natural general-
izations of four of these designs were settled. Here we
essentially settle the existence of natural generalizations
of five of the remaining seven Clatworthy designs.

1 Introduction

An ordered pair (V, B), where V is a set of mn elements called
symbols and B is a collection of k-subsets of V called blocks is
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said to be a group divisible design GDD(n, m, k; A1, A\2) where
V is partitioned into m sets of size n, each element of which
is called a group, and if each pair of symbols occurring in the
same group appears together in precisely A; blocks, while each
pair of symbols occurring in different groups appears together
in exactly A blocks. Symbols occuring in the same or different
groups are known as first or second associates respectively. A
restricted version of this original definition with A; = 0 is more
commonly used as the definition of GDD in the milieu of com-
binatorial designs; in this setting, a GDD(n, m, k;0, A) is more
commonly known as a (k, A\)-GDD of type n™. The existence
of a GDD(n,m, 3; M\, A2) was completely settled by Fu, Rodger,
and Sarvate [5, 6]. The most difficult and novel constructions
were required when the number of groups, m, was less than k,
namely when m = 2 [5]. The existence of GDDs when m < k
is, in general, a difficult case to solve. Indeed, when k = 4, lit-
tle is known about the existence of such GDDs. For example,
when k = 4 Henson, Hurd, and Sarvate [9, 11, 12] have existence
results for GD Ds that are necessary and sufficient for small val-
ues of m and n, and are then used to construct some infinite
families of GDDs. They also consider a restricted version of the
problem in which the number of symbols in each block in any
group has the same parity as in any other group. Hurd, Mishra,
and Sarvate [10] have some results when k = 5 and m = 6.

Clatworthy’s table from 1973 [2] lists all eleven GDDs with
three groups and block size four that have replication number
at most 10. (See Table 1). These can be generalized in natu-
ral ways. The existence of such generalizations for four of these
eleven Clatworthy GDDs has been studied in two previous pa-
pers, as described in the following results.

Henson and Sarvate [8] generalized one of these 11 designs,
namely R127, proving the following result.
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R96
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Table 1: Clatworthy’s Table

Theorem 1.1. There exists a GDD(n,3,4;2,1) if and only if
n =2 (mod 6).

Rodger and Rogers [13] generalized three of these 11 designs,
namely, R96, S2, and S4, proving the following results.

Theorem 1.2. There exists a GDD(n,3,4;4,5) if and only if
n =2 (mod 6).

Theorem 1.3. There ezists a GDD(n, 3, 4;4,2) if and only if
= 2 (mod 3), except possibly if n = 11.

Corollary 1.4. There ezists a GDD(n,3,4;8,4) if and only if
n =2 (mod 3), ezcept possibly if n = 11.

In this paper we study the existence of generalizations of five
of the remaining seven designs in the Clatworthy table, namely
S1,55, §3, R104, and R105 (see Theorem 3.1, Corollary 4.1,
Theorem 5.2, Theorem 6.2 and Theorem 7.1).
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2 Preliminaries

Throughout this paper we will use the following design con-
structed by Brouwer, Schrijver, and Hanani [1] (for a more gen-
eral setting see also [16] and Theorem 4.6 in [7] on page 256).

Theorem 2.1. Necessary and sufficient conditions for the exis-
tence of a (4,\)-GDD of type m* are:

1. u>4,
2. Mu—1)m =0 (mod 3), and
3. du(u — 1)m? =0 (mod 12),

with the ezception of (m,u, ) € {(2,4,1),(6,4,1)}, in which
case no such GDD ezists.

It is also fruitful to describe these designs as graph decompo-
sitions, each symbol being represented by a vertex. Let G(n, 3; Ay,
)2) be the graph with vertex set Z, x Z3 in which (u, ¢) is joined
to (v, j) with

1. \; edges if i = j, and
2. Ap edges if 1 # 7.

Then a GDD(n, 3,4; A1, A2) is clearly equivalent to a parti-
tion of the edges of G(n,3; A1, A2) into sets of size 6, each of
which induces a copy of Ky; for each i € Z3, Z, x {i} is a
group. As such, G(n, 3; A1, A2) is said to be the associated graph
of the GDD. These two notions will be used interchangeably
throughout this paper.

To construct these designs we must first define the nesting
of a GDD(V, B) = GDD(n,3,3; A1, A2) as follows. A nesting of
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GDD(V, B) with associated graph G(n,3; A1, ;) is defined to
be a function of f : B — V such that {{z, f(b)} |z € be B} =
E(G(n,3; A1, \2)). More informally, a GDD with block size 3 is
said to be nested if a fourth point can be added to each block
such that the edges gained from the nesting cover precisely the
same edges as the original GDD. So each pair {u, v} of vertices
occurs together in twice as many blocks of size 4 in the nested
design as the number of triples containing {u, v} in the original
GDD. We will use the following theorem provided by Jin Hua
Wang [14].

Theorem 2.2. There ezists a nesting of a GDD(t,n,3; A\ =
0,2 = A) if and only if Mt(n — 1) = 0 (mod 6) and n > 4.

3 Generalizing Clatworthy Design S1

We first find a small S1-design.
Lemma 3.1. There ezists a GDD(2,3,4;2,1).

Proof. To produce a GDD(2,3,4;2,1), let V = Zy; X Z3
and B = {{(0,a),(1,a),(0,a+1),(1,a+1)} | a € Z3}; for each
l € Zs, Zy x {l} is a group.

Theorem 3.2. There exists a GDD(n,3,4;2,1) if and only if
n =2 (mod 6).

Proof. We start by proving the necessity, so suppose there
exists a

GDD(n,3,4;2,1). Since each block contains six edges, the
number of blocks in any such design is

_1BG(n,32,1) _ 35 +3n) _

b 6 5 n® —

o 3
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Clearly the number of blocks is an integer, so n must be even.

For each block, each vertex contains 3 of its incident edges.
So the number of blocks containing each vertex v is

2n—-1)4+2n 4n -2
dg(n,3:2,1) (V) = ( 3) =—3

which must be an integer. Thus n = 2 (mod 3). Since n
must also be even, n = 2 (mod 6) is a necessary condition.

Next we prove the sufficiency, so suppose that n = 2 (mod
6). We will show there exists a GDD(n, 3,4;2,1), (Z, x Zs3, B)
with groups Z,, x {l} for each | € Z3. Since Lemma 3.1 produces
a GDD(2,3,4;2,1), we can assume that n > 8. The design will
be described as a graph decomposition of the graph G(n, 3;2, 1).

For each i € Z,/,, let B(i) be a copy of S2 on the vertices
in C(i) = {2i,2i + 1} X Zs3, where for each | € Z3, {2i,2i +
1} x {1} is a group. By Theorem 2.2, there exists a (3,1)-GDD,
(Zn, {{2i,2i41} | i € Z,/2}, B1), that has nesting f of type 2*/2.
Let Bi(l) = {{(z,), (5, 1), (z,0), (f (), L + )}, {(=z, 1 + 1), (w, L +
1),(z,0 + 1), (f®),D} | | € Z3,{z,y,2} € B}, reducing the
sums in the second coordinate of each vertex modulo 3. Then
define the blocks in the design as follows:

B = (Ui, B@) U Uiz, B:()

We first count the number of blocks we get in the construc-
tion to see if it equals b = n?— 2 (calculated above when proving
the necessity).
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1Bl = |(Uiez, , BO) + 1(Uiez, B1(D)]
(3)(n/2) + (2)(3)((A2=R=2)/3)

2(n{(n—=1)—-n
3n+

2 2
n:|;2n2—2n—2n

2n2-n

[ ]

[
[

Since |B| = b it suffices to check that each edge occurs in at
least the correct number (that is, A; or A;) of blocks in B. We
consider each edge, e = {(z, a), (¥, b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i € Zy/o.
Then clearly e occurs in A\; = 2 blocks in B(%) if e joins
two vertices in the same group and e occurs in Ay = 1
block in B(%) if e joins two vertices in different groups, as
required.

2. Next suppose that e = {(z, a), (y,a)} for some a € Z3 and
0 < z,y < n where for each ¢ € Z,/;, e does not join
two vertices in C(i). Let {z,y,21} be the triple in B;(a)
that contains {z,y}, and suppose f({z,y, z1}) = z; is the
vertex added to the triple by the nesting. Then the A\; = 2
blocks containing the edge {(z, a), (¥, @)} are as follows:
{(z,a),(y,0), (21,0), (22,2 + 1)}, {(x) a), (y,a), (21,0),

(22, a-+ 2)}

3. Finally suppose e = {(z,a), (y,b)} where a,b € Z3, a # b
and where for each i € Z,/3, e does not join two vertices
in C(z). We can assume that b = a + 1 (mod 3). Since
{z,y} € G(n,3;2,1), exactly one of the following occurs:
either there exists a triple t; = {z, 23,24} € Bj(a) such
that f(t1) = y or there exists a triple to = {y, 23,24} €
By(a) such that f(t2) = z. Therefore e = {(z,a), (y,b =
a+ 1)} occurs in Ay = 1 of the following blocks:

{(z,a), (23,a), (24, 0), (y,a+1)} or {(z, a), (y, a+1), (23, a+
1), (24,a + 1)}.
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Thus, every edge is covered the correct number of times by
the blocks, so n = 2 (mod 6) is a sufficient condition for a
GDD(n,3,4;2,1) to exist. B

4 A Corollary - Generalizing S5

It turns out that the necessary conditions for the existence of a
GDD(n,3,4;10,5), generalizing the Clatworthy design S5, are
the same as for the existence of a

GDD(n,3,4;2,1) (i.e. Sl-design). So we immediately ob-
tain the following corollary.

Corollary 4.1. There exists a GDD(n,3,4;10,5) if and only if
n =2 (mod 6).

Proof. The necessity follows since the degree of each vertex,
namely (20n — 10)/3 must be an integer. The sufficiency follows
by taking five copies of the S1-design constructed in Theorem

3.2.

5 Generalizing Clatworthy Design S3

To complete this design we will use the nesting described in the
Preliminaries section, as well as Theorem 2.2 provided by Jin
Hua Wang [14].

We first find a small S3-design.

Lemma 5.1. There exists a GDD(2,3,4;6,3); and a
GDD(4,3,4;6,3).

Proof. To produce a GDD(2,3,4;6,3), let V = Zy xZ3 and
each | € Z3, Zy x {l} is a group, and take three copies of each
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block produced in the small S1-design described in the proof of
Lemma 3.1.

When n = 4, four base blocks are provided that can be ro-
tated “vertically and horizontally” producing 42 blocks as re-
quired. Formally, a GDD(4,3,4;6,3) is produced by (Z4 x
Z3, B), where

B ={{(i,a), (i+1,a), (i+2, a), (i, a+1)}, {(3, a), (i+1, a), (i+
lL,a+1),(i+2,a+1)},{(,a), (¢ +2,a), ({,a+1),(+3,a+2)} |
i € Zg,a € Zs} U {{(4,a),(i + La),(i +2,a), (i + 3,0)} | i €
Zs,a € Zs3}, and where for each ! € Z3, Z, x {l} is a group.

Theorem 5.2. There exists a GDD(n,3,4;6,3) if and only if
n s even, except possibly if n = 6.

Proof. We start by proving the necessity, so suppose there
exists a

GDD(n,3,4;6,3). Since each block contains six edges, the
number of blocks in any such design is

_1E(G(n.3:6,3))| _ 35 +3(3n%) _, , 3n
= 6 = 6 =T

b

Clearly the number of blocks is an integer, so n must be even.

For each block, each vertex contains 3 of its incident edges.
So the number of blocks containing each vertex v is

' 6(n—1)+2(3n
de(n,363)(v) = ( )3 (3n) =4n — 2,

which makes no restrictions on n. Thus 7 is even is a neces-
sary condition.

To prove the sufficiency we assume that n is even, n # 6,
and show there exists a GDD(n,3,4;6,3). We will consider
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three cases in turn: n = 2 (mod 6), n = 4 (mod 6), and n =0
(mod 6).

First suppose n = 2 (mod 6). Since n = 2 (mod 6) is the
necessary condition for the existence of a GDD(n, 3,4;2, 1) (i.e.
S1-design), we immediately obtain the following corollary.

Corollary 5.3. There ezists a GDD(n,3,4;6,3) if and only if
n =2 (mod 6)

Proof. The necessity follows since the number of blocks,
namely 3n? — 3—2"— must be an integer. The sufficiency follows by
taking three copies of the S1-design constructed in Theorem 3.2.

Now suppose n = 4 (mod 6). Since Lemma 5.1 produces a
GDD(4,3,4;6,3), we can assume that n > 10. The design will
be described as a graph decomposition of the graph G(n, 3;6, 3).

For each i € Zy;, let B(i) be a copy of S3 on the vertices
in C(i) = {2¢,2 + 1} x Z3, where for each | € Zs, {2i,2i +
1} x {1} is a group. By Theorem 2.2, there exists a (3,3)-GDD,
(Zn, {{24,2i+1} | i € Zn2}, B1), that has nesting f of type 2/2.
Let Bi(l) = {{(z, 1), (%, 1), (2, 1), (f(0), + D}, {(z, I + 1), (v, +
1), (2,0 + 1),(f(0),1)} | I € Z3,{x,y,2} € Bi}, reducing the
sums in the second coordinate of each vertex modulo 3. Then
define the blocks in the design as follows:

B = (Uiz,,B®) U Uz, Bi()

We first count the number of blocks we get in the construc-
tion to see if it equals b = 3n? — 3?" (calculated above when

proving the necessity).
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1Bl = Uiz, ,, BEN + |(Urez, B1 (D))
(9)(n/2) + (3)(2)(3)((H1=2)/3)
9_21;+6$n!n;12—n!

9n+6n2—-6n—6n

6n2-3n

3n§— 3n

Since |B| = b it suffices to check that each edge occurs in at
least the correct number (that is, A; or Ag) of blocks in B. We
consider each edge, e = {(z, a), (¥, b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i € Z,,.
Then clearly e occurs in A\; = 6 blocks in B(%) if e joins
two vertices in the same group and e occurs in Ay = 3
block in B(%) if e joins two vertices in different groups, as
required.

2. Next suppose that e = {(z, a), (¥, a)} for some a € Z3 and

0 < z,y < n where for each i € Z, /3, e does not join two
vertices in C(i). Let {z,y,21},{z,y,23}, and {z,y, 25}
be the triples in Bj(a) that contain {z,y}, and suppose
f({.’l?, Y, 21}) = 2y, f({.’l), Y, 23}) = 2z, and f({.’L‘, Y, 25}) =
zg are the vertices added to the triples by the nesting.
Then the A; = 6 blocks containing the edge {(z, a), (y,a)}
are as follows:
{(IL‘, a‘)1 (ya a)’ (zla a’): (22,a+ 1)}1 {(.’E, a)v (yw a)r (21, a’): (22,
a+2)}, {(z,a), (¥,a), (23,0), (z1,a+1)}, {(z,a), (y,0), (23,
a’)? (24, a'+2)}s {(xa a‘)a (ys a’)a (257 a), (zﬁa a+1)s and {(xa a'):
(y’ a’)’ (25, a’)’ (2'6, a+ 2)

3. Finally suppose e = {(z,a), (y,b)} where a,b € Z3, a # b
and where for each i € Z,/s, € does not join two vertices
in C(i). We can assume that b = a + 1 (mod 3). Since
{z,y} € G(n,3;6,3), exactly one of the following occurs
for each of the A\s = 3 {z,y} edges: either there exists
a triple t; = {z, 27,23} € Bi(a) such that f(¢;) = y or
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there exists a triple ¢t = {y,27,2s} € Bi(a) such that
f(t2) = z. The same argument can be made for the
other two {z,y} edges using {2, 210, 211, 212}. Therefore
e = {(z,a), (y,b = a+1)} occurs in Ay = 3 of the following
blocks:

{(z,a), (27, a), (zs, @), (v, a+1)} or {(z, @), (v, a+1), (27, a+
1), (zs,a+1)}, {(z, a), (29, ), (210, @), (y,a+1)} or {(z, a),

(y,a+1), (29, a+1), (210,a+1)}, and {(z, a), (211, a), (212, a),
(y,a+1)} or {(z» a),(y,a+1),(z11,a+1), (z12,0 + 1)}

Thus, n = 4 (mod 6) is a sufficient condition for a
GDD(n,3,4;6,3) to exist.

Now suppose n = 0 (mod 6). Since n = 6 is the possible
exception, we can assume that n > 12. Similarly to the n = 4
(mod 6) case, there exists a (3,3)-GDD, (Z,,{{2i,2i + 1} |
i € Zns2}, B1), that has nesting f of type 2"/ by Theorem
2.2. Therefore, the arguments for the n = 0 (mod 6) case are
essentially the same for the n =4 (mod 6) case.

Thus, n = 0 (mod 6) is a sufficient condition for a
GDD(n,3,4;6,3) to exist. @

6 Generalizing Clatworthy Design R104

With two possible exceptions, the existence of a generalized
R104-design is settled in this section. We use a similar con-
struction that is used in the previous section. As before, we first
find some small R104-designs.

Lemma 6.1. There ezists a GDD(3,3,4;3,1), and a
GDD(12,3,4;3,1).

Proof. To produce a GDD(3,3,4;3,1), let V = Z3 x Z3 and
B = {{(i,a), (¢ +1,a),( +2,a),(¢,a+ 1)} | i € Z3,a € Z3}; for
each | € Z3, Z3 x {l} is a group.
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When n = 12, 4 base blocks are provided that can be rotated

producing 144 blocks towards the required number of blocks.
Let the 36 vertices be labeled 0,1,2,...,35 and partitioned into
three groups such that vertices with labels that are 0 (mod 3)
are one group, 1 (mod 3) are the second group, and 2 (mod 3)
are the third group. Then consider the following four blocks:
{0,2,6,9}, {0,9, 10, 22}, {0, 6, 18,21}, and {0,8,20,25}. When
these four blocks are rotated they cover the edges of differ-
ence 3,6,9,15, 18 twice, difference 12 three times, and differ-
ences 1,2,4,5,7,8,10,11, 13, 14,
16,17 once. In other words, we have covered the mixed edges
the required one time and the pure edges two of the required
three times, with the exception of the pure edges of difference
12 which are completely covered. Finally, to cover the pure edges
that are left we use Theorem 2.1; this exists since n = 12 and
u=n/3 > 4, to put a (4,1) — GDD of type 3*/% on each level
with group G;. The edges of difference 12 make 4 triangles so
the vertices in each triangle form a group in the (4,1) —GDD of
type 3%. On each level, the (4,1) — GDD of type 3™/ produces
9 blocks for a total of 27 blocks. Thus, the 144427 = 171 which
is the required number of blocks (see (*) below).

Theorem 6.2. There ezists a GDD(n,3,4;3,1) if and only if
n=0,3 (mod 12), except possibly if n = 24, 36.

Proof. We start by proving the necessity, so suppose there
exists a

GDD(n,3,4;3,1). Since each block contains six edges, the
number of blocks in any such design is

_|B(G(,3;3,1) _ 3(257) +3(n?) _ 5n?—3n
B 6 - 6 == ®

Clearly the number of blocks is an integer, so n = 0,3 (mod
12).

b

311



For each block, each vertex contains 3 of its incident edges.
So the number of blocks containing each vertex v is

3(n—-1)+2(n 5
de(n,3:3,1) (V) = “ ; o 3n S
0

which means n = 0 (mod 3). Thus n = 0,3 (mod 12) is a
necessary condition.

To prove the sufficiency we assume that n = 0,3 (mod 12),
n # 24,36, and show there exists a GDD(n, 3,4;3,1). We will
consider two cases in turn: n = 3 (mod 12) and n = 0 (mod
12), n > 48.

First suppose n = 3 (mod 12). Since Lemma 6.1 produces a
GDD(3,3,4;3,1), we can assume that n > 15. The design will
be described as a graph decomposition of the graph G(n, 3;3,1).

For each i € Z, 3, let B(i) be a copy of R104 on the vertices
in C(i) = {3i,3i+1, 3i+2} x Z3, where for each | € Z3, {37,3i+
1,3 + 2} x {l} is a group. By Theorem 2.2, there exists a
(3,1)-GDD, (Zn, {{3i,3i + 1,3i + 2} | i € Z,/3}, By), that has
nesting f of type 3"/3. Let Bi(!) = {{(=z, 1), (%, 1), (2, 1), (F(b), !+
D} {(z, 1+ 1), (5,0 +1),(2,1+1),(f(b),D)} | | € Z3,{z,y,2} €
B}, reducing the sums in the second coordinate of each vertex
modulo 3. By Theorem 2.1 (since n > 15 and u = n/3 > 4), for

‘each | € Z3 let B'(l) be a copy of a (4,1) —GDD of type 33 on
the vertex set Z, x {l} with groups in {{3¢,3¢+1,3i +2} x {{} |
i € Zy/3}. Then define the blocks in the design as follows:

B = (Uiez, B®) U Uiz, Bi1) U (Urez, B' 1))

We first count the numbzer of blocks we get in the construc-
tion to see if it equals b = @ (calculated above when proving

the necessity).
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Bl [(Uiez, B + (Uiez, BiO)l + | (Uieg, B'())]

leZ.
(9)(n/3) + (2)(3)((M‘—2”)/3) + 3(LL
9“ +n2—n-2n+ 2o
3n+n 3n+ "24‘" -3
4n2in2—n—2n

51;"’—31':1

)

Since |B| = b it suffices to check that each edge occurs in at
least the correct number (that is, A3 or A;) of blocks in B. We
consider each edge, e = {(z, a), (¥,b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i € Zy/3.
Then clearly e occurs in A\; = 3 blocks in B(7) if e joins
two vertices in the same group and e occurs in Ay = 1
block in B(%) if e joins two vertices in different groups, as
required.

2. Next suppose that e = {(z,a), (y,a)} for some a € Z; and
0 < z,y < n where for each ¢ € Z,/;, e does not join
two vertices in C(z). Let {z,y, 21} be the triple in B;(a)
that contains {z,y}, and suppose f({z,y,21}) = 27 is the
vertex added to the triple by the nesting. Then the A; = 3
blocks containing the edge {(z,a), (y,a)} are as follows:
{(1:7 a), (y) a')1 (zla a)’ (227 a+ 1)}7 {(xv a')) (y: a')) (zla a')’ (22)
a + 2)}, and in one block in B'(a).

3. Finally suppose e = {(z,a), (y,b)} where a,b € Z3, a # b
and where for each i € Z,/;, e does not join two vertices
in C(¢). We can assume that b = a + 1 (mod 3). Since
{z,y} € G(n,3;3,1), exactly one of the following occurs:
either there exists a triple t; = {z, 23,2} € Bj(a) such
that f(t1) = y or there exists a triple ¢t = {y, 23,24} €
B(a) such that f(t2) = z. Therefore e = {(z,a), (y,b =
a+ 1)} occurs in Ay = 1 of the following blocks:

{(.’L’, a)’ (23, a): (24) a)s (y7 a+1)} or {((L‘, a)! (ya a+1)a (23, a+
1), (Z4,d + 1)}

313



Thus, n = 3 (mod 12) is a sufficient condition for a
GDD(n,3,4;3,1) to exist.

Now suppose n = 0 (mod 12), n > 48.

For each ¢ € Z, 12, let B(i) be a copy of the GDD(12,3,4;3,1)
created in Lemma 6.1 on the vertices in C(¢) = {12¢,12i +
1,120 +2,12i + 3,125 + 4,120 + 5,12 + 6,12{ + 7,12 + 8,12i +
9,12 + 10,12i + 11} X Z3, where for each | € Z3, {12¢,12: +
1,120 +2,12i + 3,12¢ + 4,120 + 5,121 + 6,12 + 7,12¢ + 8, 12¢ +
9,12i + 10,127 + 11} x {l} is a group. By Theorem 2.2, there
exists a (3,1) — GDD, (Z, {{12i,12i + 1,12 + 2,12i + 3,12i +
4,123 4+ 5,12 + 6,120 + 7,12 + 8,12 + 9,12 + 10, 124 + 11} |
i € Zyn)12}, B1), that has nesting f of type 12712, Let By(l) =
{{(=,0), @, 0, (2,0), (£(b), L + 1)}, {(=, [+ 1), (v, L+ 1), (2,1 + 1),
(f(b),1)} | L € Z3,{z,y, 2} € By}, reducing the sums in the sec-
ond coordinate of each vertex modulo 3. By Theorem 2.1 (since
n > 48 and u = n/3 > 4), for each | € Z3 let B'(l) be a copy of
a (4,1) — GDD of type 122 on the vertex set Z, x {l} with
groups in {{12i,12¢ +1,12i + 2,12{ + 3,12i + 4,12: + 5,12¢ +
6,121 +7,12i + 8,12i + 9,12 + 10,126 + 11} x {I} | i € Z,3}.
Then define the blocks in the design as follows:

B = (Uiez,, B®) Y (Uiez, Bi(1) U (Usez, B'D))

We first count the numbzer of blocks we get in the construc-
tion to see if it equals b = 22732 (calculated above when proving

the necessity).

1Bl = (Usezin BE) + [(Uiezy BIO) + Uiz, B0
= ()(3) + 6((2e=y=tn) 3) 4 3 B FIE

n L 02 pn_1ln+ 5

12
57n 2 _ n2-n _ lin

57n+4n?—48n+n—n—1in
4

5n2—3n

4
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Since |B| = b it suffices to check that each edge occurs in at
least the correct number (that is, A3 or A;) of blocks in B. We
consider each edge, e = {(z, a), (¥,b)}, in turn.

1. Suppose e joins two vertices in C(i) for some ¢ € Zy3.
Then clearly e occurs in A; = 3 blocks in B(z) if e joins
two vertices in the same group and e occurs in Ay = 1
block in B(7) if e joins two vertices in different groups, as
required.

2. Next suppose that e = {(z, a), (y,a)} for some a € Z3 and
0 < z,y < n where for each i € Z,3, e does not join
two vertices in C(i). Let {z,y, 21} be the triple in B;(a)
that contains {z,y}, and suppose f({z,y,21}) = 2, is the
vertex added to the triple by the nesting. Then the A\; =3
blocks containing the edge {(z, a), (y,a)} are as follows:
{(x’ a’)’ (y’ a), (zla a)> (22’ a+ 1)}’ {(:13, a’)’ (ya a), (2:1, a‘)) (22,
a + 2)}, and in one block in B'(a).

3. Finally suppose e = {(z,a), (y,b)} where a,b € Z3, a # b
and where for each i € Z,/, e does not join two vertices
in C(i). We can assume that b = a + 1 (mod 3). Since
{z,y} € G(n,3;3,1), exactly one of the following occurs:
either there exists a triple t; = {z, 23,24} € Bi(a) such
that f(t1) = y or there exists a triple {2 = {y, 23,24} €
By(a) such that f(ts) = z. Therefore e = {(z,a), (y,b =
a+ 1)} occurs in Ay = 1 of the following blocks:

{(wi a‘)a (23, a)a (24, a), (y’ a+1)} or {(x1 a’)7 (ya a’+1)7 (23, a+
1), (24,0 + 1)}.

Thus, n = 0 (mod 12), n > 48, is a sufficient condition for a
GDD(n,3,4;3,1) to exist. W
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7 Generalizing Clatworthy Design R105

With two possible exceptions, the existence of a generalized
R105-design is settled in this section.

Theorem 7.1. There exists a GDD(n,3,4;6,2) if and only if
n =0 (mod 3), ezcept possibly if n = 6,9.

Proof. We start by proving the necessity, so suppose there
exists a

GDD(n,3,4;6,2). Since each block contains six edges, the
number of blocks in any such design is

|E(G(n,3;6,2))] 3(2&=2)+3(20?)  n(5n—3)
N 6 = 6 =3 ™

b

Clearly the number of blocks is an integer, so there are no
restrictions on n because either n or 5n — 3 is even.

For each block, each vertex contains 3 of its incident edges.
So the number of blocks containing each vertex v is

6(n—-1)+2(2n 10
de(n,3e,2) (V) = ( )3 (2n) =3n- 2,

which means n = 0 (mod 3) is a necessary condition.

To prove the sufficiency we assume that n = 0 (mod 3),
n # 6,9, and show there exists a GDD(n, 3,4;6, 2).

For each i € Z,/3, let B(i) be a copy of R105 on the vertices
in C(i) = {3i,3i+1, 3i+2} x Z3, where for each I € Z3, {37,3i+
1,3i + 2} x {l} is a group. By Theorem 2.2, there exists a
(3,2)-GDD, (Z,,{{3¢,3i + 1,3i + 2} | i € Zn3}, B1), that has
nesting f of type 3™/3. Let By (1) = {{(z, 1), (v,1), (2, ), (f(b),1+
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D} {(z,1+1), (m1+1),(z1+1),(f(),))} | L € Z5,{z,y,2} €
B}, reducing the sums in the second coordinate of each vertex
modulo 3. By Theorem 2.1 (since n > 12 and u = n/3 > 4), for
each | € Z3 let B'(l) be a copy of a (4,1) — GDD of type 3"/3 on
the vertex set Z, x {I} with groups in {{37,3:+1, 3; + 2} x {{} |
i € Zn/3}. Then define the blocks in the design as follows:

B = (Uiez, B() U (Uiez, Bi()) U (Usez, B'}))

We first count the number of blocks we get in the construc-
tion to see if it equals b = 5" =31 (calculated above when proving

the necessity).

Bl = [Uiez, BE+ (Urezs BiO)] + Uiz, B D)
= (18)n/3) + QE)E(EP2 ) + 6({G)=)
8B 4 9n? —2n - 4n+M

6n +2n% — 6n 4 20 ”2'3”
4n24+n2-3n

2
5n2—3n
2

Since |B| = b it suffices to check that each edge occurs in at
least the correct number (that is, A3 or A;) of blocks in B. We
consider each edge, e = {(z,a), (y,b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i € Zy/3.
Then clearly e occurs in A; = 6 blocks in B(3) if e joins
two vertices in the same group and e occurs in Ay = 2
block in B(%) if e joins two vertices in different groups, as
required.

2. Next suppose that e = {(z,a), (y,a)} for some a € Z3 and
0 < z,y < n where for each ¢ € Z,/5, e does not join two
vertices in C(3). Let {z,y, 21} and {z,y, 23} be the triples
in By(a) that contain {z,y}, and suppose f({z,y,21}) =
zo and f({z,y,23}) = 2 are the vertices added to the
triples by the nesting. Then the A\; = 6 blocks containing
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the edge {(z,a), (y,a)} are as follows:
{(Z, a)’ (y, a‘)7 (zla a‘)1 (Zg, a+ 1)}a {(.’lf, a‘)a (ya a')a (zl, a)s (z2’

a+2)}, {(z,0),(y,0), (23,0), (24,06 + 1)}, {(2,0), (v, 0),
(23,a), (24,a + 2)} and in two blocks in B'(a).

. Finally suppose e = {(z, a), (y,b)} where a,b € Z3, a # b

and where for each i € Z,)s, € does not join two vertices
in C(i). We can assume that b = a + 1 (mod 3). Since
{z,y} € G(n,3;6,2), exactly one of the following occurs:
either there exists a triple t; = {z, 25,26} € Bi(a) such
that f(¢;) = y or there exists a triple t; = {y, 25,26} €
Bi(a) such that f(t) = z. The same argument can be
made for the other {z,y} edge using {27,23}. Therefore
e = {(z,a), (y,b = a+1)} occurs in Ay = 2 of the following
blocks: ,

{(IB, a)a (25’ a)a (Zs, a’)) (ys a+1)} or {(SB, a), (y1 a'+1): (ZS) a+
1), (2, a+1)}, and {(33: a), (#7,4a), (28, a), (y,a+1)} or {(.’L',
a), (y,a+ 1), (27,6 + 1), (zs,a + 1)}.

Thus, n = 6,9 (mod 12), n # 6,9, is a sufficient condition

for a GDD(n,3,4;6,2) to exist. B
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