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Abstract

A subset A of vertices of a graph G is a k-dominating set if every
vertex not in A has at least k£ neighbors in A and a k-star-forming
set if every vertex not in A forms with & vertices of A a not neces-
sarily induced star K. The maximum cardinalities of a minimal
k-dominating set and of & minimal k-star-forming set of G are respec-
tively denoted by ['x(G) and SFx(G). We determine upper bounds
on I't(G) and SFi(G) and describe the structure of the extremal
graphs attaining them.
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1 Introduction

We consider simple undirected graphs G = (V(G), E(G)) of order n =
|V(G)|, minimum degree §(G) and maximum degree A(G). We often use
the abbreviations V, §, A for V(G), §(G), A(G). The subgraph induced by
a subset 4 of V is denoted G[A]. Its number of edges, minimum degree
and maximum degree are denoted e(A), 6(A), A(A). The number of edges
between two subsets A and B is e(A, B). The degree d(z) of a vertex z
of V is equal to its number of neighbors in V' and d4(z) is its number of
neighbors in the subset A.

For a positive integer k, a subset A is a k-dominating set, briefly k-DS, if
da(z) > kfor every vertex z € V\A and a k-independent setif A(A) < k—1.
The minimum and maximum cardinalities of a minimal k-dominating set of
G are respectively denoted vk (G) and I'x(G). The minimum and maximum
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cardinalities of a maximal k-independent set of G are respectively denoted
ix(G) and Bx(G). By the definitions, 1(G) < I'x(G) and ix(G) < Bi(G)
for every k and G. These notions, introduced by Fink and Jacobson in
[4], generalize those of domination and independence which correspond to
the case k = 1. Hence 11(G) = 4(G), I'1(G) = I'(G), 11(G) = i(G) and
Bi(G) = B(G).

An independent set is dominating if and only if it is maximal and in
this case, it is a minimal dominating set. This implies that every graph
satisfies

7(G) £ i(G) < B(G) <T(G). (1)

This inequality chain can be only partially generalized by using the
k-domination and the k-independence because for £ > 2, a maximal k-
independent set is not necessarily k-dominating. Hence we cannot compare
its cardinality to vx(G) and I'x(G) and there exist graphs such that v (G) >
ix(G) or T'x(G) < Bk(G) as observed in [3]. To overcome this inconvenience,
a new definition was proposed by Chellali and Favaron in [1]. A subset A of
vertices of G is a k-star-forming-set, briefly k-SFS, if every vertex of V' \ A
forms with k vertices of A a not necessarily induced star K k. In other
words, for every vertex z in V' \ A, either d4(z) 2 k or = has a neighbor y
in A such that d4(y) = k — 1 (or both). The whole set V itself is a k-SFS.
The minimum and maximum cardinalities of a minimal (under inclusion)
k-SFS are respectively denoted sfx(G) and SFi(G). A k-independent set is
maximal if and only if it is a k-SFS and in this case, A is a minimal k-SF'S.
Therefore the chain (1) is completely generalized and for every graph G
and every positive integer k£ we have

sfi(G) < ik(G) < Br(G) < SFi(G). (2)

In this paper, we are interested in the upper parameters SFy and Ty
and we call I'y-set (SFy-set resp.) a minimal k-DS (k-SFS) of maximum
cardinality. For k& = 1, the 1-SFS are the dominating sets, and thus
SF1(G) = I'(G) = I'(G). It is well-known that I'(G) < n — § for ev-
ery graph and the graphs satisfying I'(G) = n — é have been descibed by
Cockayne and Mynhardt in [2]. For £ > A +1, V is a minimal k-DS and a
minimal k-SF8S, and thus SFa41(G) = Ta+1(G) = n. For the other values
of k, a k-DS is a k-SFS which implies sfx(G) < 7x(G) for every graph. But
a minimal k-DS is not necessarily a minimal k-SFS and SFi(G) can be
larger or smaller than I'x(G) as shown by examples in [1]. Our purpose is
to determine for k£ < A upper bounds on SFi(G) and I'x(G) generalizing
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I'(G) £ n—§ and to describe the structures of the extremal graphs attain-
ing the bounds. The result depends on the position of k with respect to
the minimum degree § of G.

2 Upper bounds on I'y and SFy for § <k < A

Theorem 1 Let G be a graph of order n, minimum degree § and mazimum
degree A and let k be a positive integer such that 6 < k < A. Then

SFr(G)<n-1 and I(G)<n—-1.

Proof. The whole set V' of vertices of G, which is a k-dominating set
and a k-star-forming set, is not a minimal k-dominating set nor a minimal
k-star-forming set since for every vertex v of degree A, the set V \ {v}
is k-dominating and thus k-star-forming. Therefore I't(G) < n — 1 and
SFr(G)<n-1. =

Definition 2 Family F;

Let k be a positive integer. A graph G = (V, E) belongs to the family F;. if
it contains a vertez v such that A(V \ {v}) < k —1 and at least one vertex
of N[v) has degree at least k in G.

Theorem 3 If G € Fi, then §(G) < k < A(G) and SFi(G) =n — 1.

Proof. The inequalities §(G) < k and k < A(G) are respectively implied
by the first and the second condition in the definition of ;. We note that
if k < A, then v is the unique vertex of G of degree A. Since d(v) > k or
dv\{v}(x) = k—1 for some neighbor z of v, the set V'\ {v} is k-star-forming.
Moreover for all z € V'\ {v} and all y € Ny\(4)(2), dv\(v,z}(x) < k—1 and
dv\{v,z}(¥) < k—2. Therefore V'\ {v, z} is not k-star-forming and V'\ {v}
is a minimal k-star-forming set of order n — 1. Hence SFy(G) > n — 1. By
Theorem 1, SF(G)=n—1. =

Theorem 4 A graph G of order n, minimum degree § and mazimum degree
A satisfies SFx(G) = n — 1 for some positive integer k with § < k < A if
and only if G € Fy.

Proof. The part “if” is proved in Theorem 3. To prove Part “only if’, we

consider a graph G with § < k < A and SFix(G) =n—1. Let S =V \ {v}
be a SFi(G)-set.
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If A(S) > k, let z € S with ds(z) > k. When possible, we choose
z € N(v). If v is adjacent to z, let w be any vertex in Ns(z). Since
ds\{w}(z) > k—1, the set §\ {w} is k-star-forming, a contradiction with the
minimality of the k-SFS S. Hence all the neighbors of v have degree at most
k — 1 and v is not adjacent to z. If d(v) > k, then dg\(s)(v) = ds(v) 2 k
and S\ {z} is a k-DS and thus a k-SFS, a contradiction. Therefore v is not
adjacent to z and d(v) < k — 1. Since S is k-star-forming and S\ {z} is
not, v has a neighbor u in S such that ds(u) > k—1 and dg\ (2} (u) <k—1.
Hence u € Ng(z) and ds(u) = k — 1. Therefore there exists a vertex ¢ in
Ns(z) \ Ns(u). Both vertices v and ¢ have a neighbor of degree at least
k—1in S\ {t}. Therefore S\ {t} is a k-star-forming set, a contradiction.

Hence A(S) < k — 1 and since A > k, v or one of its neighbors has
degree at least k. Thus G belongs to Fr. ®

Definition 5 Family G

Let k be a positive integer. A graph G = (V, E) belongs to the family Gy if
it contains a verter v such that either d(v) > k and A(V\{v}) < k-1, or
d(v) =k and d(z) <k —1 for allz € V'\ N[v].

Theorem 6 If G € Gx, thend <k <A and ['x(G) =n—1.

Proof. The inequalities 6(G) < k < A(G) are obvious from the definition
of Gy. Since d(v) > k, the set S = V' \ {v} is k-dominating. Let z € §
and §' = S\ {z}. If dg(z) < k — 1, then z is not k-dominated by §’. If
ds(z) > k, then d(v) = k and = € N(v). In this case, v is not k-dominated
by S’'. Therefore S is a minimal k-dominating set of G of order n — 1 and
I'«(G) 2 n—1. By Theorem 1, I'x(G) =n—1. =

Theorem 7 A graph G of order n, minimum degree § and mazimum degree
A satisfies T (G) = n — 1 for some integer k with § < k < A if and only if
G e G.

Proof. The part “if’ is proved in Theorem 6. To prove Part “only if’,
we consider a graph G = (V,E) with § < k < A and T'x(G) = n — 1. Let
S = V \ {v} be a T'x(G)-set. Then d(v) > k. Let z € §\ N(v). Since
S\ {z} is not k-dominating, d(z) = ds(z) < k — 1. Let y € N(v). Since
S\ {y} is not k-dominating, either d(v) = k or ds(y) < k — 1 (or both).
Therefore G € G¢.

When k = 1, we know that I')(G) = SF1(G) = I'(G). The graphs of
F1 = G, consist of one star when § =1 or of the disjoint union of one star
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and isolated vertices when § = 0. We show that for k > 2, the two families
Fi and Gx not disjoint and from k > 3, not included in each other.

Definition 8 Family I

Let k be a positive integer. A graph G = (V, E) belongs to the family T if
it contains a vertez v such that d(v) > k and A(V\ {v}) <k -1.

Theorem 9 1. Fi. NGy =TI;.
2. Fork>2, G\ Fi # 0 and if G € Gi. \ Fi, then A(G) > k.
3. For k>3, Fx \Gx # 0 and if G € Fi \ Gk, then A(G) = k.

Proof. 1. Let G € Z; and let v be as in the definition of Z;. The couple
G,v satifies the conditions of the definitions 2 and 5. Hence SFi(G) =
I't(G) =n -1 and G € Fi N Gk.

Conversely let G = (V, E) € Fi N Gk and following the definition of Fy,
let z € V such that A(V'\ {z}) < k —1 and at least one vertex of N[z] at
degree at least k in G. If d(z) > k, then G € Z; by taking v = z in the
definition of Zx. If d(z) < k, let S = V'\{y} be a minimal k-DS of G of order
n—1 (S exists since G € Gi). Then d(y) 2 k, y is necessarily a neighbor of
z of degree exactly k and since A(V'\{z}) < k—1, A(V\{y}) < k. Assume
A(V\{y}) = k and let z € V'\{y} such that dy (4} (2z) = k. Then z € N(=z),
d(z) = k and the vertices y and z are not adjacent. Hence V' \ {y,2} is a
k-DS, a contradiction with he minimality of the k-DS V' \ {y}. Therefore
A(V\{y}) £ k—1 and thus G € Z; by taking v = y in the definition of
Zk.

2. For k > 2, an example of an arbitrarily large graph in Gi \ F is obtained
by joining a vertex v to the centers ci,...,cx of k stars K , with p > k
leaves. For these graphs of minimum degree § = 1 and maximum degree
A=p+1>k, V\{v} is a minimal ¥-DS but not a minimal k-SFS of G.
One can check that V' \ {¢1,¢2, -+ ,ck} is a largest minimal k-SFS of G.
Hence SF(G) =n—k <Tx(G) and G ¢ Fi.

More generally, if G € G and A(G) = k, then the vertex v in the
definition of Gi has degree d(v) = k and A(V' \ {v}) < k — 1, implying
G € F. Hence if G € Gi \ Fi, then A(G) > k.

3. For k = 2, 7, = I, is the family of graphs obtained by joining a vertex

v to at least two vertices of the disjoint union of K;’s and K3’s. Hence
F2 € Ga.
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For k > 3, an example of an arbitrarily large graph in F \ Gk is obtained
by joining two vertices v and w to the centers ¢;,c2, -+ ,ck—1 of k —1
subdivided stars (each ray is subdivided by an arbitrary number of vertices)
with k —2 leaves. For these graphs of minimum degree 6 = 1 and maximum
degree A = k, the set V' \ {w} is a minimal k-SFS of G but is not k-
dominating. One can check that V'\ {c1, ¢z, ,ck—1} is a largest minimal
k-DS of G. Hence SFx(G) =n—1,Tx(G) =n—k+1 and G € Fi \ Gx.

More generally, if G € Fi and A(G) > k, then G has a unique vertex v of
degree A(G) and V'\ {v} is the unique SFi(G)-set. Then A(V\{v}) < k-1,
implying G € Gi. Hence if G € Fi \ Gk, then A(G) =k. =

3 Upper bounds on I'y and SFy for 1 <k <4

Theorem 10 Let G be a graph of order n and minimum degree 6 and let
k be an integer such that1 < k < 4. Then SFi(G) <n—-d+k~1 and
I'e(G)sn—-6+k-1.

Proof. Let S be a set of vertices of G of order |S| > n — 6 + k and let
z€S Then|V\S| <d—k ds(z) >26-|V\S| 2k and ds(v)) >
§—|V\(SU{v})| = k+1forallv € V\S. Hence S\ {z} is a k-dominating
set and thus also a k-star-forming set. Therefore no k-dominating set nor
k-star-forming set of order more than n — § + k — 1 can be minimal, which
implies the result. =

Definition 11 Family Hy
Let k be a positive integer. A graph G = (V,E) belongs to the family H;
if V is the disjoint union of two non-empty sets S and T, |S| > k, G[S] is
(k —1)-regular, §(T) > |T| — |S| + k —1 and all the edges between S and T
ezist.
Theorem 12 Let G be a graph of order n in Hy.
1. G has minimum degree 6 > k and SFi(G) =T (G)=n—-0+k—1.
2. If k is even, then n — & is odd.
Proof. 1. For any vertex z, d(z) = k— 1+ |T| if z € S and d(z) >
|S|+6(T)>2k—1+|T|ifz €T. Hence

(G)=k-1+|T| 2 k. (3)
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The set S is k-dominating, and thus k-star-forming, since every vertex of
T is k-dominated by S. If z is any vertex of S, then dg\(s)(z) = k-1
and each neighbor of z in S has degree kK — 2 in S\ {z}. Therefore S
is a minimal k-dominating set and & minimal k-star-forming set of order
n—|T|=n—48+k—1 by (3). The result follows from Theorem 10.

2. If k is even, then the order n —d + k — 1 of the (k — 1)-regular set S
must be even. Therefore n — 6 is odd. =

Theorem 13 Let G = (V, E) be a graph of order n and minimum degree
0. If k is an integer such that 2 < k < 4, then SFi,(G)=n—6+k—1 if
and only if G € Hj.

Proof. The part “if” is proved in Theorem 12. To prove Part “only if’, we
consider a graph G = (V,F) with § > k > 2 and SFx(G)=n -6+ k —1.
Let S be a SFi(G)-set. Since |V \ S| = § — k + 1, every vertex of S
(respectively V' \ S) has at least k — 1 (respectively k) neighbors in S.
Let A ={zx € S|ds(z) =k—-1}, B= {z € S| ds(z) > k} and
P ={zecV\S|ds(z) =k} Note that for all v € AU P, d(v) > § implies
that v is adjacent to all the vertices of V \ (S U {v}). In particular, all the
edges between A and V' \ S exist.

Suppose first that A(S) > k, i.e. B # 0, and let x € B. Since S\ {z}
is not a k-star-forming set and z is k-dominated by S\ {z}, z has at least
one neighbor y in P such that every vertex of Ng(y) \ {z} has less than
k — 1 neighbors in S\ {z}. Therefore the k — 1 vertices of Ns(y) \ {z}
are in A and are adjacent to z. Since all the edges between A and P exist,
|A| = k-1 > 1since & > 2. This implies that every vertex of AU(V'\ S) has
at least one neighbor in B. Hence for all z € A, S\ {z} is a k-star-forming
set, in contradiction to the minimality of S.

Therefore A(S) = k—1 and G[S] is (k—1)-regular. Each vertexof S = A
is adjacent to all the vertices of V' \ S. Moreover, since each vertex of V'\ S
has degree at least § = |V\S|+k—1in G, §(V\S) > |[V\S|+k—-1-|3|.
Thus Ge Hx. m

The following corollary is a consequence of I'y (G) = SF1(G) when k = 1
and of Theorems 12 and 13 when &k > 2.

Corollary 14 Let G be a graph of order n and minimum degree 6. If
SFr(G) = n— 0+ k — 1 for some positive integer k < 8, then I'y(G) =
SF«(G).

Now we study the family of graphs such that I'x(G) =n -6+ k — 1.
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Definition 15 Family Ly

Let k be a positive integer. The graph G = (V, E) belongs to the family Ly
if V is partitioned into AU BU PUQ with B,P # 0 and the following
properties are satisfied:

(Pa) dauB(z)=k—1 forallze A

(Pb) daus(z) >k forallze B

(Pc) All the edges between A and PUQ exist
(Pd) dp(z)=k—|A| forallz € P

(Pe) dp(z)>2k-|A|+1 forallzeQ

(Pf) G[P] is complete

(Pg) All the edges between P and Q exist

(Ph) dp(z)>1 forallzeB

(Pi) d(z)2|P|+|Q|+k~1forallze BUQ.

For a graph G € Ly, we denote |A|, |B|, |P| and |Q| respectively by a,b,p
and q. The construction of a graph satisfying Properties (Pa) to (Pi) is not
possible for every quadruplet a, b, p, g. For instance, (Pb) implies

a+b2k+1 4)
since b # 0, and since p # 0, (Pd) and (Ph) imply
k—a>1 and p(k—a)>b. (5)

Therefore p > 2 and b > 2. Similarly, considering the number e(A4, B) of
edges between A and B gives

3" daus(z)-2¢(B) = Y da(z) =e(A,B) = ) _dp(z) = ) daus(z)—2e(4;

z€B z€B €A €A

By (Pa) and (Pb), >_,cpdaus(z) = kb and 3. 4 daus(z) = a(k — 1).
Since 2e(B) < b(b — 1) and 2e(A) > 0, we get

bk — (b—1)) < a(k - 1). (6)

Inequalities (4), (5), (6) are not yet sufficient for a quadruplet to correspond
to a graph in L. The determination of a complete system of necessary
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and sufficient conditions on a,b,p,q to correspond to a graph is rather
complicated. We merely give examples of graphs in £y, which shows that
the conditions (Pa) to (Pi) are not incompatible.

Proposition 16 Let n and £ be two integers with 2 < £ < n/2 and let
Ghn,e be obtained from a cliqgue K, by deleting the £ edges of a matching
{z1y1, %292, -+ ,xeye}. Then G € Ly for every k such that £ —1 < k <
20— 3.

Proof. For £ —1 < k < 2¢ — 3, the integer p = 2¢ — k — 1 is such that
2 < p < £. The partition B = {z1,-+ ,2p}, P = {91, ,4p}, A =
{Tp41, Tpa2s -+ 1 Tl Ypt1, Yps2s o 1 ¥e} @ =V \ (AU BU P) of V satisfies
Conditions (Pa) to (Pi) of Definition 15. Hence G € L. ®

Theorem 17 Let G be a graph of order n and minimum degree §. If G €
Ly, for some positive integer k, thenk < § < n—2 and'x(G) = n—6+k—1.

Proof. Every vertex z in AU P has degree p+g+k—1 by (Pa) and (Pc) if
z € A and by (Pc¢), (Pd), (Pf) and (Pg) if z € P. Every vertex z in BUQ
has degree at least p+ g + k — 1 by (Pi). Hence

d=p+g+k—-1l=n—(a+b)+k-1 (7

By (4) and sincep 22, k<d<n-2.

By (Pc), (Pd) and (Pe), daup(z) = k if z € P and dayp(z) > k+1
if z € Q. Hence AU B is a k-dominating set of G. Moreover for each
z € AUB, (AU B)\ {z} is no more a k-DS of G, by (Pa) if z € A and by
(Ph), (Pc) and (Pd) if z € B. Therefore AU B is a minimal k-dominating
setofordera+b=n— (p+4q) =n—38+k —1 by (7). The result follows
from Theorem 10. =

Theorem 18 Let G = (V, E) be a graph of order n and minimum degree
6. If k is an integer such that 1 < k < 6 thenTx(G) =n—6+k —1 if and
only if G € Hx U L.

Proof. The part “if” is proved in Theorems 12 and 17. To prove Part “only
if?, we consider a graph G = (V, E) withé > k > 1 and ['x(G) = n—d+k—1.
Let S be a I'x(G)-set. Then §d = n— |S|+k —1. For every z € S,
0 <d(z) <ds(z) +|V\ S| =ds(z) + 6 — k + 1. Therefore 6(S) > k—1.
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If A(S) = k — 1, then G[S] is (k — 1)-regular. Let V\ S = T. Since
0 = n—|S|+ k-1, all the edges between S and T exist. Moreover
6(T)>6—|S| 2 |T| -S|+ k — 1. Therefore G € Hx.

IfFAS) 2k, let A={z€e S|ds(z)=k—-1}, B={z € S |ds(z) >
k}#0,P={z € V\S|ds(z) =k} and Q = {z € V\S | ds(z) > k}. Since
the set S is k-dominating, the four sets A, B, P, @ partition V. Properties
(Pa) and (Pb) come from the definition of A and B. By the minimality
of S, S\ {z} is not k-dominating for any z € B, implying that every
vertex of B has a neighbor in P (Property (Ph)). Hence P # (. From
(Pa) and 6 = n — |S| + k — 1, we get dpug(z) = n — |S| = |P| + |Q| for
all z € A (Property (Pc)). Properties (Pd) and (Pe) are consequences of
the definition of P and Q together with (Pc). Properties (Pf) and (Pg) are
consequences of the definition of P together with d(z) > § = |P|+|Q|+k—1
for all z € P. Finally (Pi) comes from § = |P|+|Q| + k — 1. Therefore the
partition AU BU P U Q of V satisfies Properties (Pa) to (Pi) and G € L.
|

The extremal cases k = 1 and k = § are of particular interest. As they
are considered in both Sections 2 and 3, they can be used to verify the
compatibility of the results of the two sections.

Particular case k=1

For every graph G of minimum degree § > 1, SFi(G) =T'1(G) = I'(G) <
n — § and the extremal graphs are those of #; U £; by Theorem 18.

From Definition 11, the graphs G of H; are as follows: V is partitioned
into two sets S and T, G[S] is independent and all the edges between S
and T exist. The edges of G[T| are optional subject to §(T) + |S| > 4.

Let (A, B, P,Q) be a partition of a graph G of £, as in Definition 15.
Necessarily, e = 0 and p > b since e < k — 1 and p(k — a) > b. By (7), the
minimum degree of G is § = p + g. Hence, for all z € B we have

p+q < d(z) = dp(z) +dp(z) + dg(z) < dp(z) +dp(z) +q¢.  (8)

Therefore Y _cp(dp(z) + dp(z)) > pb, ie., e(B,P) + 2¢(B) > pb. By
Property (Pd), e(B, P) = p. Hence 2e(B) > p(b— 1) and since 2e(B) <
b(b — 1), we get b > p. Therefore b = p and 2¢(B) = b(b—1), i. e.
G|B] is complete. By (Pd) and (Ph), the equality b = p implies that
dp(z) = 1, and thus the edges between B and P form a perfect matching.
Then dg(z) +dp(z) = p for all z € B and the first inequality in (8) implies
that dg(z) = ¢ for all z € B. The graphs G of £, are thus as follows: V
is partitioned into three sets B, P,Q with |B| > 2 and |P| > 2, G(B] and
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G|P] are complete, the edges between B and P form a perfect matching,
and all the edges between B U P and @ exist. The graph is completed by
edges in G[Q)] subject to (Pi).

Note that the two families H; and £, were already determined by Cock-
ayne and Mynhardt in (2] as those of graphs satisfying ['(G) = n — §(G).

When § =1, the case k =1 is also considered in Section 2. The reader
can verify that the graphs of minimum degree 1 of F; = G; obtained in
Section 2 and the graphs of minimum degree 1 of H; (since those of of £,
have minimum degree § > 2) obtained in Section 3 are the same, namely

the stars.

Particular case k =4§ > 2

The case k = § is considered in both sections 2 and 3. The family of
graphs of minimum degree § > 2 satisfying I's(G) = n — 1 is equal to G5 by
Theorem 7 and to Hs by Theorem 18 (since by Theorem 17, the graphs in
Ly are such that § > k). Similarly the family of graphs of minimum degree
0 > 2 satisfying SF5(G) = n—1 is equal to F5 by Theorem 4 and to Hs by
Theorem 13. It can be checked that the graphs of minimum degree § = k
of Fi, Gr and Hy form the same family of graphs obtained by joining a
vertex v to every vertex of a (6 — 1)-regular graph.

We finish with some examples of graphs in £, NHy, Li \ Hi or Hi \ Lk.

e By Proposition 16, the graph Gn ¢ of minimum degree § = n — 2 is
in L4_;. When ¢ is even, the set S = {z1,2,, - 1T YL Y2, ,y%} has
order £ =n -6+ (£—1)—1 and G[S] is (€ — 2)-regular. The partition
S,V \ S satisfies the conditions of Definition 11 for ¥ = £ — 1. Therefore
Gn,e € He—1 N Ly

e By the second part of Theorem 12, the graph G, ¢, for which n —§ = 2
is even, cannot belong to H;. for k even. Hence by Proposition 16, G, ¢ €
L \ Hy for every even k between £ — 1 and 2¢ — 3.

e For k > 3 of any parity and n > k + 4, consider a graph L with vertex
set {a1,b1,b2,* ,bk+1,P1,P2,41,02, - yCn—k-4}. All the edges exist in
L except the six edges a1b;, aibs, p1d1, pibs, p2bs and pabs. Then 6 =
n —3. The sets 4 = {al}, B = {bl,bz,--- ,bk+1}, P = {p1,p2}, Q =
{@1,92,"+ ,@n—k-4} satisfy Conditions (Pa) to (Pi) of the definition of L.
Hence I't(L) =n —~d+k —1=k+2 and the set AU B is a ['x(L)-set of
order k + 2. If L € H; then it would contain a (k — 1)-regular subgraph S
of order k + 2. In such a subgraph, k + 2 edges are missing. This is clearly
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impossible if k 4 2 > 6. This is also impossible when k = 3 or 4 because of
the disposition of the six missing edges of L. Therefore L € Li \ Hy.

e For every k > 1 and n > k + 1, the complete graph K, belongs to Hj
(consider a partition S,T where S is any set of n —J + k — 1 = k vertices).
But K, ¢ Ly since every graph of £; has minimum degree at most n — 2
by Theorem 17. Therefore K,, € Hz \ Lk.

4 Open question

The examples of graphs in G \ Fi or in Fi \ Gk given in Theorem 9, show
that when k > &, I'x(G) can be larger or smaller than SF(G).

When k < 4, the graphs in Ly \ Hy, satisfy SFx(G) < Tx(G) =n -6+
k-1, but if SFx(G) =n—36+k—1 then'+(G) is alsoequal ton—d+k—1
by Corollary 14. Hence the following question can be considered:

Does every graph G of minimum degree ¢ satisfy SFx(G) < I'x(G) for
every positive integer k < 67
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