Bounds on the Upper k-Domination Number and the Upper k-Star-Forming Number of a Graph

Odile Favaron

LRI, UMR 8623, Université Paris-Sud and CNRS, 91405 Orsay, France

Abstract

A subset A of vertices of a graph G is a k-dominating set if every vertex not in A has at least k neighbors in A and a k-star-forming set if every vertex not in A forms with k vertices of A a not necessarily induced star $K_{1,k}$. The maximum cardinalities of a minimal k-dominating set and of a minimal k-star-forming set of G are respectively denoted by $\Gamma_k(G)$ and $\mathrm{SF}_k(G)$. We determine upper bounds on $\Gamma_k(G)$ and $\mathrm{SF}_k(G)$ and describe the structure of the extremal graphs attaining them.

Keywords: k-dominating number, k-star-forming number

MSC2010: 05C69, 05C35

1 Introduction

We consider simple undirected graphs G = (V(G), E(G)) of order n = |V(G)|, minimum degree $\delta(G)$ and maximum degree $\Delta(G)$. We often use the abbreviations V, δ, Δ for $V(G), \delta(G), \Delta(G)$. The subgraph induced by a subset A of V is denoted G[A]. Its number of edges, minimum degree and maximum degree are denoted $e(A), \delta(A), \Delta(A)$. The number of edges between two subsets A and B is e(A, B). The degree d(x) of a vertex x of V is equal to its number of neighbors in V and $d_A(x)$ is its number of neighbors in the subset A.

For a positive integer k, a subset A is a k-dominating set, briefly k-DS, if $d_A(x) \geq k$ for every vertex $x \in V \setminus A$ and a k-independent set if $\Delta(A) \leq k-1$. The minimum and maximum cardinalities of a minimal k-dominating set of G are respectively denoted $\gamma_k(G)$ and $\Gamma_k(G)$. The minimum and maximum

cardinalities of a maximal k-independent set of G are respectively denoted $i_k(G)$ and $\beta_k(G)$. By the definitions, $\gamma_k(G) \leq \Gamma_k(G)$ and $i_k(G) \leq \beta_k(G)$ for every k and G. These notions, introduced by Fink and Jacobson in [4], generalize those of domination and independence which correspond to the case k = 1. Hence $\gamma_1(G) = \gamma(G)$, $\Gamma_1(G) = \Gamma(G)$, $i_1(G) = i(G)$ and $\beta_1(G) = \beta(G)$.

An independent set is dominating if and only if it is maximal and in this case, it is a minimal dominating set. This implies that every graph satisfies

$$\gamma(G) \le i(G) \le \beta(G) \le \Gamma(G).$$
 (1)

This inequality chain can be only partially generalized by using the k-domination and the k-independence because for $k \geq 2$, a maximal k-independent set is not necessarily k-dominating. Hence we cannot compare its cardinality to $\gamma_k(G)$ and $\Gamma_k(G)$ and there exist graphs such that $\gamma_k(G) > i_k(G)$ or $\Gamma_k(G) < \beta_k(G)$ as observed in [3]. To overcome this inconvenience, a new definition was proposed by Chellali and Favaron in [1]. A subset A of vertices of G is a k-star-forming-set, briefly k-SFS, if every vertex of $V \setminus A$ forms with k vertices of A a not necessarily induced star $K_{1,k}$. In other words, for every vertex x in $V \setminus A$, either $d_A(x) \geq k$ or x has a neighbor y in A such that $d_A(y) \geq k - 1$ (or both). The whole set V itself is a k-SFS. The minimum and maximum cardinalities of a minimal (under inclusion) k-SFS are respectively denoted $s_k(G)$ and $s_k(G)$. A k-independent set is maximal if and only if it is a k-SFS and in this case, A is a minimal k-SFS. Therefore the chain (1) is completely generalized and for every graph G and every positive integer k we have

$$\operatorname{sf}_k(G) \le i_k(G) \le \beta_k(G) \le \operatorname{SF}_k(G).$$
 (2)

In this paper, we are interested in the upper parameters SF_k and Γ_k and we call Γ_k -set $(SF_k$ -set resp.) a minimal k-DS (k-SFS) of maximum cardinality. For k=1, the 1-SFS are the dominating sets, and thus $SF_1(G) = \Gamma_1(G) = \Gamma(G)$. It is well-known that $\Gamma(G) \leq n - \delta$ for every graph and the graphs satisfying $\Gamma(G) = n - \delta$ have been descibed by Cockayne and Mynhardt in [2]. For $k \geq \Delta + 1$, V is a minimal k-DS and a minimal k-SFS, and thus $SF_{\Delta+1}(G) = \Gamma_{\Delta+1}(G) = n$. For the other values of k, a k-DS is a k-SFS which implies $SF_k(G) \leq \gamma_k(G)$ for every graph. But a minimal k-DS is not necessarily a minimal k-SFS and $SF_k(G)$ can be larger or smaller than $\Gamma_k(G)$ as shown by examples in [1]. Our purpose is to determine for $k \leq \Delta$ upper bounds on $SF_k(G)$ and $\Gamma_k(G)$ generalizing

 $\Gamma(G) \leq n - \delta$ and to describe the structures of the extremal graphs attaining the bounds. The result depends on the position of k with respect to the minimum degree δ of G.

2 Upper bounds on Γ_k and SF_k for $\delta \leq k \leq \Delta$

Theorem 1 Let G be a graph of order n, minimum degree δ and maximum degree Δ and let k be a positive integer such that $\delta \leq k \leq \Delta$. Then

$$SF_k(G) \le n-1$$
 and $\Gamma_k(G) \le n-1$.

Proof. The whole set V of vertices of G, which is a k-dominating set and a k-star-forming set, is not a minimal k-dominating set nor a minimal k-star-forming set since for every vertex v of degree Δ , the set $V \setminus \{v\}$ is k-dominating and thus k-star-forming. Therefore $\Gamma_k(G) \leq n-1$ and $\mathrm{SF}_k(G) \leq n-1$.

Definition 2 Family \mathcal{F}_k

Let k be a positive integer. A graph G = (V, E) belongs to the family \mathcal{F}_k if it contains a vertex v such that $\Delta(V \setminus \{v\}) \leq k-1$ and at least one vertex of N[v] has degree at least k in G.

Theorem 3 If $G \in \mathcal{F}_k$, then $\delta(G) \leq k \leq \Delta(G)$ and $SF_k(G) = n - 1$.

Proof. The inequalities $\delta(G) \leq k$ and $k \leq \Delta(G)$ are respectively implied by the first and the second condition in the definition of \mathcal{F}_k . We note that if $k < \Delta$, then v is the unique vertex of G of degree Δ . Since $d(v) \geq k$ or $d_{V\setminus\{v\}}(x) = k-1$ for some neighbor x of v, the set $V\setminus\{v\}$ is k-star-forming. Moreover for all $x \in V\setminus\{v\}$ and all $y \in N_{V\setminus\{v\}}(x)$, $d_{V\setminus\{v,x\}}(x) \leq k-1$ and $d_{V\setminus\{v,x\}}(y) \leq k-2$. Therefore $V\setminus\{v,x\}$ is not k-star-forming and $V\setminus\{v\}$ is a minimal k-star-forming set of order n-1. Hence $\mathrm{SF}_k(G) \geq n-1$. By Theorem 1, $\mathrm{SF}_k(G) = n-1$.

Theorem 4 A graph G of order n, minimum degree δ and maximum degree Δ satisfies $SF_k(G) = n - 1$ for some positive integer k with $\delta \leq k \leq \Delta$ if and only if $G \in \mathcal{F}_k$.

Proof. The part "if" is proved in Theorem 3. To prove Part "only if", we consider a graph G with $\delta \leq k \leq \Delta$ and $SF_k(G) = n - 1$. Let $S = V \setminus \{v\}$ be a $SF_k(G)$ -set.

If $\Delta(S) \geq k$, let $x \in S$ with $d_S(x) \geq k$. When possible, we choose $x \in N(v)$. If v is adjacent to x, let w be any vertex in $N_S(x)$. Since $d_{S\setminus\{w\}}(x) \geq k-1$, the set $S\setminus\{w\}$ is k-star-forming, a contradiction with the minimality of the k-SFS S. Hence all the neighbors of v have degree at most k-1 and v is not adjacent to x. If $d(v) \geq k$, then $d_{S\setminus\{x\}}(v) = d_S(v) \geq k$ and $S\setminus\{x\}$ is a k-DS and thus a k-SFS, a contradiction. Therefore v is not adjacent to x and $d(v) \leq k-1$. Since S is k-star-forming and $S\setminus\{x\}$ is not, v has a neighbor v in v such that v and v in v has a neighbor v in v such that v in v has a neighbor v in v and v in v has a neighbor v and v in v have a neighbor of degree at least v in v has v in v have a neighbor of degree at least v in v have v in v in v have a neighbor of degree at least v in v in v have v in v in

Hence $\Delta(S) \leq k-1$ and since $\Delta \geq k$, v or one of its neighbors has degree at least k. Thus G belongs to \mathcal{F}_k .

Definition 5 Family G_k

Let k be a positive integer. A graph G = (V, E) belongs to the family \mathcal{G}_k if it contains a vertex v such that either d(v) > k and $\Delta(V \setminus \{v\}) \le k - 1$, or d(v) = k and $d(x) \le k - 1$ for all $x \in V \setminus N[v]$.

Theorem 6 If $G \in \mathcal{G}_k$, then $\delta \leq k \leq \Delta$ and $\Gamma_k(G) = n - 1$.

Proof. The inequalities $\delta(G) \leq k \leq \Delta(G)$ are obvious from the definition of \mathcal{G}_k . Since $d(v) \geq k$, the set $S = V \setminus \{v\}$ is k-dominating. Let $x \in S$ and $S' = S \setminus \{x\}$. If $d_S(x) \leq k - 1$, then x is not k-dominated by S'. If $d_S(x) \geq k$, then d(v) = k and $x \in N(v)$. In this case, v is not k-dominated by S'. Therefore S is a minimal k-dominating set of G of order n-1 and $\Gamma_k(G) \geq n-1$. By Theorem 1, $\Gamma_k(G) = n-1$.

Theorem 7 A graph G of order n, minimum degree δ and maximum degree Δ satisfies $\Gamma_k(G) = n - 1$ for some integer k with $\delta \leq k \leq \Delta$ if and only if $G \in \mathcal{G}_k$.

Proof. The part "if" is proved in Theorem 6. To prove Part "only if", we consider a graph G = (V, E) with $\delta \leq k \leq \Delta$ and $\Gamma_k(G) = n - 1$. Let $S = V \setminus \{v\}$ be a $\Gamma_k(G)$ -set. Then $d(v) \geq k$. Let $x \in S \setminus N(v)$. Since $S \setminus \{x\}$ is not k-dominating, $d(x) = d_S(x) \leq k - 1$. Let $y \in N(v)$. Since $S \setminus \{y\}$ is not k-dominating, either d(v) = k or $d_S(y) \leq k - 1$ (or both). Therefore $G \in \mathcal{G}_k$.

When k=1, we know that $\Gamma_1(G)=\mathrm{SF}_1(G)=\Gamma(G)$. The graphs of $\mathcal{F}_1=\mathcal{G}_1$ consist of one star when $\delta=1$ or of the disjoint union of one star

and isolated vertices when $\delta = 0$. We show that for $k \geq 2$, the two families \mathcal{F}_k and \mathcal{G}_k not disjoint and from $k \geq 3$, not included in each other.

Definition 8 Family \mathcal{I}_k

Let k be a positive integer. A graph G = (V, E) belongs to the family \mathcal{I}_k if it contains a vertex v such that $d(v) \geq k$ and $\Delta(V \setminus \{v\}) \leq k - 1$.

Theorem 9 1. $\mathcal{F}_k \cap \mathcal{G}_k = \mathcal{I}_k$.

- 2. For $k \geq 2$, $\mathcal{G}_k \setminus \mathcal{F}_k \neq \emptyset$ and if $G \in \mathcal{G}_k \setminus \mathcal{F}_k$, then $\Delta(G) > k$.
- 3. For $k \geq 3$, $\mathcal{F}_k \setminus \mathcal{G}_k \neq \emptyset$ and if $G \in \mathcal{F}_k \setminus \mathcal{G}_k$, then $\Delta(G) = k$.

Proof. 1. Let $G \in \mathcal{I}_k$ and let v be as in the definition of \mathcal{I}_k . The couple G, v satisfies the conditions of the definitions 2 and 5. Hence $SF_k(G) = \Gamma_k(G) = n - 1$ and $G \in \mathcal{F}_k \cap \mathcal{G}_k$.

Conversely let $G = (V, E) \in \mathcal{F}_k \cap \mathcal{G}_k$ and following the definition of \mathcal{F}_k , let $x \in V$ such that $\Delta(V \setminus \{x\}) \leq k-1$ and at least one vertex of N[x] at degree at least k in G. If $d(x) \geq k$, then $G \in \mathcal{I}_k$ by taking v = x in the definition of \mathcal{I}_k . If d(x) < k, let $S = V \setminus \{y\}$ be a minimal k-DS of G of order n-1 (S exists since $G \in \mathcal{G}_k$). Then $d(y) \geq k$, y is necessarily a neighbor of x of degree exactly k and since $\Delta(V \setminus \{x\}) \leq k-1$, $\Delta(V \setminus \{y\}) \leq k$. Assume $\Delta(V \setminus \{y\}) = k$ and let $z \in V \setminus \{y\}$ such that $d_{V \setminus \{y\}}(z) = k$. Then $z \in N(x)$, d(z) = k and the vertices y and z are not adjacent. Hence $V \setminus \{y, z\}$ is a k-DS, a contradiction with he minimality of the k-DS $V \setminus \{y\}$. Therefore $\Delta(V \setminus \{y\}) \leq k-1$ and thus $G \in \mathcal{I}_k$ by taking v = y in the definition of \mathcal{I}_k .

2. For $k \geq 2$, an example of an arbitrarily large graph in $\mathcal{G}_k \setminus \mathcal{F}_k$ is obtained by joining a vertex v to the centers c_1, \ldots, c_k of k stars $K_{1,p}$ with $p \geq k$ leaves. For these graphs of minimum degree $\delta = 1$ and maximum degree $\Delta = p+1 > k$, $V \setminus \{v\}$ is a minimal k-DS but not a minimal k-SFS of G. One can check that $V \setminus \{c_1, c_2, \cdots, c_k\}$ is a largest minimal k-SFS of G. Hence $\mathrm{SF}_k(G) = n-k < \Gamma_k(G)$ and $G \notin \mathcal{F}_k$.

More generally, if $G \in \mathcal{G}_k$ and $\Delta(G) = k$, then the vertex v in the definition of \mathcal{G}_k has degree d(v) = k and $\Delta(V \setminus \{v\}) \leq k - 1$, implying $G \in \mathcal{F}_k$. Hence if $G \in \mathcal{G}_k \setminus \mathcal{F}_k$, then $\Delta(G) > k$.

3. For k = 2, $\mathcal{F}_2 = \mathcal{I}_2$ is the family of graphs obtained by joining a vertex v to at least two vertices of the disjoint union of K_1 's and K_2 's. Hence $\mathcal{F}_2 \subseteq \mathcal{G}_2$.

For $k \geq 3$, an example of an arbitrarily large graph in $\mathcal{F}_k \setminus \mathcal{G}_k$ is obtained by joining two vertices v and w to the centers $c_1, c_2, \cdots, c_{k-1}$ of k-1 subdivided stars (each ray is subdivided by an arbitrary number of vertices) with k-2 leaves. For these graphs of minimum degree $\delta=1$ and maximum degree $\Delta=k$, the set $V\setminus\{w\}$ is a minimal k-SFS of G but is not k-dominating. One can check that $V\setminus\{c_1,c_2,\cdots,c_{k-1}\}$ is a largest minimal k-DS of G. Hence $\mathrm{SF}_k(G)=n-1$, $\Gamma_k(G)=n-k+1$ and $G\in\mathcal{F}_k\setminus\mathcal{G}_k$.

More generally, if $G \in \mathcal{F}_k$ and $\Delta(G) > k$, then G has a unique vertex v of degree $\Delta(G)$ and $V \setminus \{v\}$ is the unique $SF_k(G)$ -set. Then $\Delta(V \setminus \{v\}) \le k-1$, implying $G \in \mathcal{G}_k$. Hence if $G \in \mathcal{F}_k \setminus \mathcal{G}_k$, then $\Delta(G) = k$.

3 Upper bounds on Γ_k and SF_k for $1 \le k \le \delta$

Theorem 10 Let G be a graph of order n and minimum degree δ and let k be an integer such that $1 \leq k \leq \delta$. Then $SF_k(G) \leq n - \delta + k - 1$ and $\Gamma_k(G) \leq n - \delta + k - 1$.

Proof. Let S be a set of vertices of G of order $|S| \ge n - \delta + k$ and let $x \in S$. Then $|V \setminus S| \le \delta - k$, $d_S(x) \ge \delta - |V \setminus S| \ge k$ and $d_S(v) \ge \delta - |V \setminus (S \cup \{v\})| \ge k + 1$ for all $v \in V \setminus S$. Hence $S \setminus \{x\}$ is a k-dominating set and thus also a k-star-forming set. Therefore no k-dominating set nor k-star-forming set of order more than $n - \delta + k - 1$ can be minimal, which implies the result.

Definition 11 Family \mathcal{H}_k

Let k be a positive integer. A graph G=(V,E) belongs to the family \mathcal{H}_k if V is the disjoint union of two non-empty sets S and T, $|S| \geq k$, G[S] is (k-1)-regular, $\delta(T) \geq |T| - |S| + k - 1$ and all the edges between S and T exist.

Theorem 12 Let G be a graph of order n in \mathcal{H}_k .

- 1. G has minimum degree $\delta \geq k$ and $SF_k(G) = \Gamma_k(G) = n \delta + k 1$.
- 2. If k is even, then $n \delta$ is odd.

Proof. 1. For any vertex x, d(x) = k - 1 + |T| if $x \in S$ and $d(x) \ge |S| + \delta(T) \ge k - 1 + |T|$ if $x \in T$. Hence

$$\delta(G) = k - 1 + |T| \ge k. \tag{3}$$

The set S is k-dominating, and thus k-star-forming, since every vertex of T is k-dominated by S. If x is any vertex of S, then $d_{S\setminus\{x\}}(x) = k-1$ and each neighbor of x in S has degree k-2 in $S\setminus\{x\}$. Therefore S is a minimal k-dominating set and a minimal k-star-forming set of order $n-|T|=n-\delta+k-1$ by (3). The result follows from Theorem 10.

2. If k is even, then the order $n-\delta+k-1$ of the (k-1)-regular set S must be even. Therefore $n-\delta$ is odd.

Theorem 13 Let G = (V, E) be a graph of order n and minimum degree δ . If k is an integer such that $2 \le k \le \delta$, then $SF_k(G) = n - \delta + k - 1$ if and only if $G \in \mathcal{H}_k$.

Proof. The part "if" is proved in Theorem 12. To prove Part "only if", we consider a graph G=(V,E) with $\delta \geq k \geq 2$ and $\mathrm{SF}_k(G)=n-\delta+k-1$. Let S be a $SF_k(G)$ -set. Since $|V\setminus S|=\delta-k+1$, every vertex of S (respectively $V\setminus S$) has at least k-1 (respectively k) neighbors in S. Let $A=\{x\in S\mid d_S(x)=k-1\},\ B=\{x\in S\mid d_S(x)\geq k\}$ and $P=\{x\in V\setminus S\mid d_S(x)=k\}$. Note that for all $v\in A\cup P$, $d(v)\geq \delta$ implies that v is adjacent to all the vertices of $V\setminus (S\cup \{v\})$. In particular, all the edges between A and $V\setminus S$ exist.

Suppose first that $\Delta(S) \geq k$, i.e. $B \neq \emptyset$, and let $x \in B$. Since $S \setminus \{x\}$ is not a k-star-forming set and x is k-dominated by $S \setminus \{x\}$, x has at least one neighbor y in P such that every vertex of $N_S(y) \setminus \{x\}$ has less than k-1 neighbors in $S \setminus \{x\}$. Therefore the k-1 vertices of $N_S(y) \setminus \{x\}$ are in A and are adjacent to x. Since all the edges between A and P exist, $|A| = k-1 \geq 1$ since $k \geq 2$. This implies that every vertex of $A \cup (V \setminus S)$ has at least one neighbor in B. Hence for all $z \in A$, $S \setminus \{z\}$ is a k-star-forming set, in contradiction to the minimality of S.

Therefore $\Delta(S) = k-1$ and G[S] is (k-1)-regular. Each vertex of S = A is adjacent to all the vertices of $V \setminus S$. Moreover, since each vertex of $V \setminus S$ has degree at least $\delta = |V \setminus S| + k - 1$ in G, $\delta(V \setminus S) \ge |V \setminus S| + k - 1 - |S|$. Thus $G \in \mathcal{H}_k$.

The following corollary is a consequence of $\Gamma_1(G) = \mathrm{SF}_1(G)$ when k = 1 and of Theorems 12 and 13 when $k \geq 2$.

Corollary 14 Let G be a graph of order n and minimum degree δ . If $SF_k(G) = n - \delta + k - 1$ for some positive integer $k \leq \delta$, then $\Gamma_k(G) = SF_k(G)$.

Now we study the family of graphs such that $\Gamma_k(G) = n - \delta + k - 1$.

Definition 15 Family \mathcal{L}_k

Let k be a positive integer. The graph G = (V, E) belongs to the family \mathcal{L}_k if V is partitioned into $A \cup B \cup P \cup Q$ with $B, P \neq \emptyset$ and the following properties are satisfied:

(Pa)
$$d_{A \cup B}(x) = k - 1$$
 for all $x \in A$

(Pb)
$$d_{A \cup B}(x) \ge k \text{ for all } x \in B$$

(Pc) All the edges between A and
$$P \cup Q$$
 exist

(Pd)
$$d_B(x) = k - |A|$$
 for all $x \in P$

(Pe)
$$d_B(x) \ge k - |A| + 1$$
 for all $x \in Q$

- (Pf) G[P] is complete
- (Pg) All the edges between P and Q exist
- (Ph) $d_P(x) \ge 1$ for all $x \in B$

(Pi)
$$d(x) \ge |P| + |Q| + k - 1$$
 for all $x \in B \cup Q$.

For a graph $G \in \mathcal{L}_k$, we denote |A|, |B|, |P| and |Q| respectively by a, b, p and q. The construction of a graph satisfying Properties (Pa) to (Pi) is not possible for every quadruplet a, b, p, q. For instance, (Pb) implies

$$a+b \ge k+1 \tag{4}$$

since $b \neq 0$, and since $p \neq 0$, (Pd) and (Ph) imply

$$k-a \ge 1$$
 and $p(k-a) \ge b$. (5)

Therefore $p \geq 2$ and $b \geq 2$. Similarly, considering the number e(A, B) of edges between A and B gives

$$\sum_{x \in B} d_{A \cup B}(x) - 2e(B) = \sum_{x \in B} d_{A}(x) = e(A, B) = \sum_{x \in A} d_{B}(x) = \sum_{x \in A} d_{A \cup B}(x) - 2e(A) = \sum_{x \in B} d_$$

By (Pa) and (Pb), $\sum_{x\in B} d_{A\cup B}(x) \ge kb$ and $\sum_{x\in A} d_{A\cup B}(x) = a(k-1)$. Since $2e(B) \le b(b-1)$ and $2e(A) \ge 0$, we get

$$b(k - (b - 1)) \le a(k - 1). \tag{6}$$

Inequalities (4), (5), (6) are not yet sufficient for a quadruplet to correspond to a graph in \mathcal{L}_k . The determination of a complete system of necessary

and sufficient conditions on a, b, p, q to correspond to a graph is rather complicated. We merely give examples of graphs in \mathcal{L}_k , which shows that the conditions (Pa) to (Pi) are not incompatible.

Proposition 16 Let n and ℓ be two integers with $2 \le \ell \le n/2$ and let $G_{n,\ell}$ be obtained from a clique K_n by deleting the ℓ edges of a matching $\{x_1y_1, x_2y_2, \cdots, x_\ell y_\ell\}$. Then $G \in \mathcal{L}_k$ for every k such that $\ell - 1 \le k \le 2\ell - 3$.

Proof. For $\ell-1 \leq k \leq 2\ell-3$, the integer $p=2\ell-k-1$ is such that $2 \leq p \leq \ell$. The partition $B=\{x_1,\cdots,x_p\},\ P=\{y_1,\cdots,y_p\},\ A=\{x_{p+1},x_{p+2},\cdots,x_\ell,y_{p+1},y_{p+2},\cdots,y_\ell\},\ Q=V\setminus (A\cup B\cup P)$ of V satisfies Conditions (Pa) to (Pi) of Definition 15. Hence $G\in \mathcal{L}_k$.

Theorem 17 Let G be a graph of order n and minimum degree δ . If $G \in \mathcal{L}_k$ for some positive integer k, then $k < \delta \le n-2$ and $\Gamma_k(G) = n-\delta+k-1$.

Proof. Every vertex x in $A \cup P$ has degree p+q+k-1 by (Pa) and (Pc) if $x \in A$ and by (Pc), (Pd), (Pf) and (Pg) if $x \in P$. Every vertex x in $B \cup Q$ has degree at least p+q+k-1 by (Pi). Hence

$$\delta = p + q + k - 1 = n - (a + b) + k - 1. \tag{7}$$

By (4) and since $p \geq 2$, $k < \delta \leq n - 2$.

By (Pc), (Pd) and (Pe), $d_{A\cup B}(x)=k$ if $x\in P$ and $d_{A\cup B}(x)\geq k+1$ if $x\in Q$. Hence $A\cup B$ is a k-dominating set of G. Moreover for each $x\in A\cup B$, $(A\cup B)\setminus \{x\}$ is no more a k-DS of G, by (Pa) if $x\in A$ and by (Ph), (Pc) and (Pd) if $x\in B$. Therefore $A\cup B$ is a minimal k-dominating set of order $a+b=n-(p+q)=n-\delta+k-1$ by (7). The result follows from Theorem 10.

Theorem 18 Let G = (V, E) be a graph of order n and minimum degree δ . If k is an integer such that $1 \le k \le \delta$ then $\Gamma_k(G) = n - \delta + k - 1$ if and only if $G \in \mathcal{H}_k \cup \mathcal{L}_k$.

Proof. The part "if" is proved in Theorems 12 and 17. To prove Part "only if", we consider a graph G=(V,E) with $\delta \geq k \geq 1$ and $\Gamma_k(G)=n-\delta+k-1$. Let S be a $\Gamma_k(G)$ -set. Then $\delta=n-|S|+k-1$. For every $x\in S$, $\delta \leq d(x) \leq d_S(x)+|V\setminus S|=d_S(x)+\delta-k+1$. Therefore $\delta(S)\geq k-1$.

If $\Delta(S) = k - 1$, then G[S] is (k - 1)-regular. Let $V \setminus S = T$. Since $\delta = n - |S| + k - 1$, all the edges between S and T exist. Moreover $\delta(T) \geq \delta - |S| \geq |T| - |S| + k - 1$. Therefore $G \in \mathcal{H}_k$.

If $\Delta(S) \geq k$, let $A = \{x \in S \mid d_S(x) = k-1\}$, $B = \{x \in S \mid d_S(x) \geq k\} \neq \emptyset$, $P = \{x \in V \setminus S \mid d_S(x) = k\}$ and $Q = \{x \in V \setminus S \mid d_S(x) > k\}$. Since the set S is k-dominating, the four sets A, B, P, Q partition V. Properties (Pa) and (Pb) come from the definition of A and B. By the minimality of S, $S \setminus \{x\}$ is not k-dominating for any $x \in B$, implying that every vertex of B has a neighbor in P (Property (Ph)). Hence $P \neq \emptyset$. From (Pa) and $\delta = n - |S| + k - 1$, we get $d_{P \cup Q}(x) \geq n - |S| = |P| + |Q|$ for all $x \in A$ (Property (Pc)). Properties (Pd) and (Pe) are consequences of the definition of P together with (Pc). Properties (Pf) and (Pg) are consequences of the definition of P together with $d(x) \geq \delta = |P| + |Q| + k - 1$ for all $x \in P$. Finally (Pi) comes from $\delta = |P| + |Q| + k - 1$. Therefore the partition $A \cup B \cup P \cup Q$ of V satisfies Properties (Pa) to (Pi) and $G \in \mathcal{L}_k$.

The extremal cases k=1 and $k=\delta$ are of particular interest. As they are considered in both Sections 2 and 3, they can be used to verify the compatibility of the results of the two sections.

Particular case k=1

For every graph G of minimum degree $\delta \geq 1$, $SF_1(G) = \Gamma_1(G) = \Gamma(G) \leq n - \delta$ and the extremal graphs are those of $\mathcal{H}_1 \cup \mathcal{L}_1$ by Theorem 18.

From Definition 11, the graphs G of \mathcal{H}_1 are as follows: V is partitioned into two sets S and T, G[S] is independent and all the edges between S and T exist. The edges of G[T] are optional subject to $\delta(T) + |S| \ge \delta$.

Let (A, B, P, Q) be a partition of a graph G of \mathcal{L}_1 as in Definition 15. Necessarily, a=0 and $p \geq b$ since $a \leq k-1$ and $p(k-a) \geq b$. By (7), the minimum degree of G is $\delta = p+q$. Hence, for all $x \in B$ we have

$$p + q \le d(x) = d_B(x) + d_P(x) + d_Q(x) \le d_B(x) + d_P(x) + q.$$
 (8)

Therefore $\sum_{x\in B}(d_P(x)+d_B(x))\geq pb$, i.e., $e(B,P)+2e(B)\geq pb$. By Property (Pd), e(B,P)=p. Hence $2e(B)\geq p(b-1)$ and since $2e(B)\leq b(b-1)$, we get $b\geq p$. Therefore b=p and 2e(B)=b(b-1), i. e. G[B] is complete. By (Pd) and (Ph), the equality b=p implies that $d_P(x)=1$, and thus the edges between B and P form a perfect matching. Then $d_B(x)+d_P(x)=p$ for all $x\in B$ and the first inequality in (8) implies that $d_Q(x)=q$ for all $x\in B$. The graphs G of \mathcal{L}_1 are thus as follows: V is partitioned into three sets B,P,Q with $|B|\geq 2$ and $|P|\geq 2$, G[B] and

G[P] are complete, the edges between B and P form a perfect matching, and all the edges between $B \cup P$ and Q exist. The graph is completed by edges in G[Q] subject to (Pi).

Note that the two families \mathcal{H}_1 and \mathcal{L}_1 were already determined by Cockayne and Mynhardt in [2] as those of graphs satisfying $\Gamma(G) = n - \delta(G)$.

When $\delta=1$, the case k=1 is also considered in Section 2. The reader can verify that the graphs of minimum degree 1 of $\mathcal{F}_1=\mathcal{G}_1$ obtained in Section 2 and the graphs of minimum degree 1 of \mathcal{H}_1 (since those of of \mathcal{L}_1 have minimum degree $\delta \geq 2$) obtained in Section 3 are the same, namely the stars.

Particular case $k = \delta \ge 2$

The case $k=\delta$ is considered in both sections 2 and 3. The family of graphs of minimum degree $\delta \geq 2$ satisfying $\Gamma_{\delta}(G)=n-1$ is equal to \mathcal{G}_{δ} by Theorem 7 and to \mathcal{H}_{δ} by Theorem 18 (since by Theorem 17, the graphs in \mathcal{L}_k are such that $\delta > k$). Similarly the family of graphs of minimum degree $\delta \geq 2$ satisfying $SF_{\delta}(G)=n-1$ is equal to \mathcal{F}_{δ} by Theorem 4 and to \mathcal{H}_{δ} by Theorem 13. It can be checked that the graphs of minimum degree $\delta = k$ of \mathcal{F}_k , \mathcal{G}_k and \mathcal{H}_k form the same family of graphs obtained by joining a vertex v to every vertex of a $(\delta-1)$ -regular graph.

We finish with some examples of graphs in $\mathcal{L}_k \cap \mathcal{H}_k$, $\mathcal{L}_k \setminus \mathcal{H}_k$ or $\mathcal{H}_k \setminus \mathcal{L}_k$.

- By Proposition 16, the graph $G_{n,\ell}$ of minimum degree $\delta=n-2$ is in $\mathcal{L}_{\ell-1}$. When ℓ is even, the set $S=\{x_1,x_2,\cdots,x_{\frac{\ell}{2}},y_1,y_2,\cdots,y_{\frac{\ell}{2}}\}$ has order $\ell=n-\delta+(\ell-1)-1$ and G[S] is $(\ell-2)$ -regular. The partition $S,V\setminus S$ satisfies the conditions of Definition 11 for $k=\ell-1$. Therefore $G_{n,\ell}\in\mathcal{H}_{\ell-1}\cap\mathcal{L}_{\ell-1}$.
- By the second part of Theorem 12, the graph $G_{n,\ell}$, for which $n-\delta=2$ is even, cannot belong to \mathcal{H}_k for k even. Hence by Proposition 16, $G_{n,\ell} \in \mathcal{L}_k \setminus \mathcal{H}_k$ for every even k between $\ell-1$ and $2\ell-3$.
- For $k \geq 3$ of any parity and $n \geq k+4$, consider a graph L with vertex set $\{a_1,b_1,b_2,\cdots,b_{k+1},p_1,p_2,q_1,q_2,\cdots,q_{n-k-4}\}$. All the edges exist in L except the six edges $a_1b_1,\ a_1b_3,\ p_1b_1,\ p_1b_2,\ p_2b_3$ and p_2b_4 . Then $\delta=n-3$. The sets $A=\{a_1\},\ B=\{b_1,b_2,\cdots,b_{k+1}\},\ P=\{p_1,p_2\},\ Q=\{q_1,q_2,\cdots,q_{n-k-4}\}$ satisfy Conditions (Pa) to (Pi) of the definition of \mathcal{L}_k . Hence $\Gamma_k(L)=n-\delta+k-1=k+2$ and the set $A\cup B$ is a $\Gamma_k(L)$ -set of order k+2. If $L\in\mathcal{H}_k$ then it would contain a (k-1)-regular subgraph S of order k+2. In such a subgraph, k+2 edges are missing. This is clearly

impossible if k+2>6. This is also impossible when k=3 or 4 because of the disposition of the six missing edges of L. Therefore $L \in \mathcal{L}_k \setminus \mathcal{H}_k$.

• For every $k \geq 1$ and $n \geq k+1$, the complete graph K_n belongs to \mathcal{H}_k (consider a partition S, T where S is any set of $n-\delta+k-1=k$ vertices). But $K_n \notin \mathcal{L}_k$ since every graph of \mathcal{L}_k has minimum degree at most n-2 by Theorem 17. Therefore $K_n \in \mathcal{H}_k \setminus \mathcal{L}_k$.

4 Open question

The examples of graphs in $\mathcal{G}_k \setminus \mathcal{F}_k$ or in $\mathcal{F}_k \setminus \mathcal{G}_k$ given in Theorem 9, show that when $k \geq \delta$, $\Gamma_k(G)$ can be larger or smaller than $SF_k(G)$.

When $k < \delta$, the graphs in $\mathcal{L}_k \setminus \mathcal{H}_k$ satisfy $SF_k(G) < \Gamma_k(G) = n - \delta + k - 1$, but if $SF_k(G) = n - \delta + k - 1$ then $\Gamma_k(G)$ is also equal to $n - \delta + k - 1$ by Corollary 14. Hence the following question can be considered:

Does every graph G of minimum degree δ satisfy $SF_k(G) \leq \Gamma_k(G)$ for every positive integer $k < \delta$?

References

- [1] M. Chellali and O. Favaron, On k-star-forming sets in graphs, J. Combin. Math. Combin. Comput. 68 (2009) 205-214.
- [2] E. J. Cockayne and C. M. Mynhardt, Domination and irredundance in cubic graphs, *Discrete Math.* 167/168 (1997) 205-214.
- [3] O. Favaron, k-domination and k-independence in graphs, Ars Combin. 25C (1988) 159-167.
- [4] J.F. Fink and M.S. Jacobson, n-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley and Sons. New York (1985) 283-300.