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Abstract

Let M (b,n) be the complete multipartite graph with
b parts By, ..., By_; of size n. A 4-cycle system of M (b, n)
is said to be a frame if the 4-cycles can be partitioned
into sets 51, ..., S; such that for 1 < j < z, S; induces a
2-factor of M(b,n) \ B; for some i € Z;. The existence
of a Cy-frame of M(b,n) has been settled when n = 4
[6). In this paper, we completely settle the existence
question of a Cy-frame of M (b, n) for all b # 2 and n.

1 Introduction

Let M(b,n) be the complete simple multipartite graph with b
parts By, ..., By—1 of size n. The vertex set, V(M (b, n)), is al-
ways chosen to be Z, x Z,, with parts {j} x Z, for each j € Z,.
The edge set, E(M(b,n)), is {{(,9),5,8)} | 4,7 € Zp,i <
j, and s,t € Z,}. Let C, denote a cycle of length 2.

An H-decomposition of a graph G is a partition of E(G),
each element of which induces a copy of H. A z-cycle system of
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a graph G is a set of z-cycles that partition the edges of G. A
2-cycle system is a C,-decompostion of G. There has been con-
siderable interest in 4-cycle systems of bipartite and multipartite
graphs. Sotteau has shown in [7] that a complete bipartite graph
can be decomposed into cycles of even length under certain con-
ditions. This result has been extended to multipartite graphs
in [1] by Billington and Cavenagh. Billington and Hoffman pro-
duced a gregarious 4-cycle-system of multipartite graphs in [2]
(a gregarious 4-cycle has each vertex in a different part).

A 2-factor of a graph G is a spanning 2-regular subgraph
of G. A 2-factorization of G is a set of edge-disjoint 2-factors,
the edges of which partition E(G). A C,-factorization is a 2-
factorization such that each component of each 2-factor is a
cycle of length z; each 2-factor of a C,-factorization is known
as a C,-factor. C,-factorizations are also known as resolvable
C,-decompositions.

A frame of the multipartite graph M(b,n) is a collection
of sets of edges, Si, ..., 5., that partition E(M(b,n)) such that
for 1 < j < z, S; induces a 2-factor of M(b,n) \ B; for some
i € Zy. A Cy-frame is a frame such that each component of each
2-factor is a 4-cycle.

The existence of a Cy-frame of M(b,4) was needed for a
construction of Cy-factorizations in [6]. The existence of said
frame was completely settled in that paper. In this paper, we )
completely settle the problem for all M (b,n).

2 Preliminary Results

We begin by finding some necessary conditions for the existence
of a Cy-frame of M(b,n).

Lemma 1 If there ezists a Cy-frame of M(b,n), then
1. b#2,
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2. |E(M(b,n))| = 0 (mod 4),
3. (b—1)n =0 (mod 4), and

4. at least one of b and n is even.

Proof If b =0 or b = 1, then there are no edges to partition in
M(b,n). There are no edges joining vertices in the same part in
M(b,n). So in order to produce 2-factors of M(b,n)\ ({d} X Z,),
it must contain more than one part. If b = 2, then M(b,n) \
({d} x Z,.) contains only one part. So b # 2.

Since a Cy-frame of M (b, n) is a 4-cycle-system, the number
of edges in M(b,n), (3)n?, must be divisible by four. Also, in
order to produce Cy-factors of M(b,n) \ ({d} x Z,,) for d € Z,,
the number of vertices of M(b,n) \ ({d} x Z,,) for d € Z; must
be divisible by four. So (b — 1)n = 0 (mod 4).

Each of the Cy-factors consists of (b— 1)n edges. In the mul-
tipartite graph M(b,n), there are (g)n2 edges. So the number
of Cy-factors in a Cy-frame of M(b,n) is

b
(2) n2 — 1 bn,
®b-1n 2
which implies that at least one of b and n is even. ]

Lemma 2 [3/ Suppose a = 1(mod 4). Then near Cy-factori-
zations of AK, ezxist for all even A.

3 Cys-Frames of M(b,4m)

In this section, we produce Cy-frames of the multipartite graph
M(b,n) with each part size a multiple of four. We use three
constructions for producing a Cy-frame of M (b, 4m) based on the
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parity of b and m. When b is odd, the parity of m is irrelevant.
When b is even, we have a construction for m is even and m is
odd. It can be easily seen that M (b, 4m) satisfies the necessary
conditions in Lemma 1 as long as b # 2.

Theorem 1 Let b be odd. There ezists a Cy-frame of M (b, 4m)
for all b # 2.

Proof Let F’ be a near 1-factorization on the vertex set Z,;, and
for each d € Z; let F} be the near 1-factor in F’ with deficiency
d; so each vertex in Z, \ {d} occurs in exactly one edge in F}.

Let F be a 1-factorization on the vertex set Z,, X Z,, and
for each t € Z,,, let F} be a 1-factor in F. Let K(B,, B,) be the
complete simple bipartite graph on the parts B; = {2} X Zm
and By = {y} XZsm, 0 < z <y < b—1. Let K(Bzx, By,) be the
complete simple bipartite graph on parts B, = {z} x {4k, 4k +
1,4k +2,4k+3} and By, = {y} x {41, 41+ 1,41+2,41+3}, 0 <
z<y<b-1, kle€Zp,.

Notice that

K(B:,B)= |J K(Buw By)-

{kI}eE(F)
t€Zm

For each {k,!} € E(F;), define a Cy-factorization of
K(B: x, By,), consisting of two Cy-factors:

okt (0) = {((z, 4K), (v, 40), (x, 4k + 2), (y, 4L + 2)),

((z,4k + 1), (y, 4l + 1), (z,4k + 3), (. 40 + 3))}
Tk (1) = {((z,4k), (y, 4l + 1), (z, 4k + 2), (y, 4l + 3)),
((z, 4k + 1), (3,4 + 2), (z, 4k + 3), (v, 41)}
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For each d € Z, let

My;= |J K(B.By),
{zw}€E(FY

which has a Cy-factorization, Py, consisting of the 2m Cy-factors:

Md(j, t) = U Wzk,yz(j) for each J€2Zs, t € L.

{zw}eE(F)
{kl}eE(F)

Notice that
M(b,am) = | My,
deZy

each edge of which therefore occurs in exactly one cycle in

U Md(J ) t) .
deZy
JEZ2
t€ZLm

Notice also that each My(j,t) is a Cy-factor of M(b,4m) \
({d} % Z4m) so the 4-cycles in

P@) = Pu,

deZy

form a Cy-frame of M (b, 4m).

Theorem 2 Suppose b and m are even. There ezists a Cy-frame
of M(b,4m) for all b # 2. '

Proof Partition the vertices Zy X Z4, into blocks B = {B;; | i €
Zy,j € Zm}, each of size 4, where B; ; = {{i} x {47,4j +1,4j +
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2,45 + 3}}. Let K(B;;, Bx,) be the complete simple bipartite
graph on parts B;; and Bj;. Notice that

M(b,4m) = | K(Bij, Biy).
i,k€Zy
i<k
JAELm

For i,k € Zy, and j,l € Z,,, let

S(b,4m) = | J K(Bij, Br)
i,k€Zy
i<k
J€Lm
and let
T(b4m) = |J K(Bij: Brs)-
i,k€Zp
i<k
j,l€Zm
il
Notice that M (b, 4m) = S(b,4m)UT(b,4m) so that in order
to produce a Cy-frame of M(b,4m), we may combine Cy-frames
of S(b,4m) and T'(b,4m). We begin by producing a Cy-frame of

T(b,4m).

Let F be a 1-factorization of K,, with vertex set Z,,, and for
each T € Z,,_1, let F; be a 1-factor in F. For each {f, g} € F%,
let K({f},{g}) be the complete simple bipartite graph with
parts {f} x Zy and {g} X Z.

Let P be a proper-edge coloring of K ({f}, {g}) such that the
edges in {{(f,d),(9,d)} | d € Zy} receive different colors. All
such K({f},{g}) produced by the 1-factorization must have the
same proper-edge coloring P, else a frame is not guaranteed. For
each d € Z;, let P; be the set of edges colored d in the coloring
P, and let P; = P;\ {(f,d),(g,d)} be a subset of P;.

Remark A proper-edge coloring of K({f},{g}) such that the
edges in {{(f,d),(g,d)} | d € Zy} receive different colors is
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equivalent to an idempotent latin square. The edge (7,j) is
colored k in the coloring if the (7, j)-entry of the idempotent
latin square contains symbol k. Note for all n # 2, there exists
an idempotent latin square of order n [5].

For each edge e = {(f, k), (9,1)} € P;, define a Cy-
factorization of K(Bjyk, By,;) consisting of two Cy-factors:

Trgt(0) = {((4f, ), (49,01), (4f +2,k), (49 + 2,1)),
((4f +1,k), (49 + 1,1), (4f + 3,k), (49 + 3,1))}

T g(1) = {((4f, k), (49 + 1,1), (4f + 2, k), (49 + 3,1)),
((4f +1,k), (4g +2,1), (4f + 3,k), (49,4))}.

For eachd € Z, and z € Z,,—1, let
Miz= |J K(Bpr Bo),

e€P;
{f.g}eE(Fz)

which has a Cy-factorization, Py, consisting of the 2 Cy-factors
My()= |J 7mald) for j €2,

e€P,
{f,g}G(Fz)

For each d € Z;, let

My= |J My,

:EGZm—l

be the graph with vertex set (Zy X Z4m) \ ({d} X Z4s), which
has a Cy-factorization, Py, consisting of the 2(m — 1) Cy-factors

My(G)= |J Maa(y) for j € Z,.

T€Lm -1
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Notice that
T(b,4m) = | Mq,
deZ,

each edge of which therefore occurs in exactly one cycle in

l_J A4iz(j)°

deZ,
$€Zm— 1
Jj€Zy

Notice also that each My, () is a Cy-factor of M(b,4m) \
({d} X Z4m) so the 4-cycles in

P@)= | Pu

deZy

form a Cy-frame of T'(b,4m).

There are two constructions for a Cy-frame of S(b, 4m) based
on the value of b. To begin, we need an almost resolvable b — 1-
cycle decomposition of 2K}, which is given in [4].

Define C = {(co(2), €1(%), ..., co—2(2)) | % € Zp, cp—2(3) = 00,
¢;(8) = i+(=1)y*1 [5/2] for 0 < j < b-3}U{(0,1,...,6—2)} to be
a (b—1)-cycle system of 2K on the vertex set V = Z,_; U {oo}.
Let ¢ = (0,1, ...,b—2). For each d € V, let C; be the cycle with
deficiency d.

Case 1: b= 0 (mod 4)

For each ¢ = (cp, ¢1,...,c—2) € C\ {c'},say c = Cy, t € Z,
and j € Z,, define a Cy-factor, P(c,t,7), of (V x Zsm) \ ({d} %
Zsm). Let v = 2j + (1 + (=1)**!). The first subscripts are re-
duced modulo (b — 1), and if the second subscript is z, (z — 4t)
is reduced modulo 4):
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P(c,t,7) = {((cs 'r+4t)) (cir1, 7+42)), (i) 1+7+4t)), (cit1, 1+
T+4t) | —1<i<§-2} U {( (€525 +2 + 48), (ci41, 25 +
4t), (ci, 27 + 3 + 4¢), (c,+1,2g+1+4t)) |2-1<i<b-3}

Also, for each t € Z,, and j € Z,, define a Cy-factor,
P(c,t,7), of (V X Zym) \ ({00} X Z4ym) as follows (with sub-
scripts similarly reduced):

P(d,t,7) = {((3,25 +4¢t), (i + 1,25 + 2+ 4¢), (3,2 + 1 +4t), i+
1,2j +3 +48)) | i € Zo_t}.

Notice that for each ¢ € C, t € Z,,, and j € Zy, P(c,t,5)
is a Cy-factor of M(b,4m) \ ({d} X Z4,,) where ¢ = C; so the

4-cycles in
U Plet.5)
&,
JEZ

form a Cy-frame of S(b, 4m).
Case 2: b =2 (mod 4)

For each ¢ = (cg,c1,...,c-2) € C\ {c'}, say ¢ = Cy and
t € Znm, define 2m Cy-factors, Po(c, t) and Py(c, t), of (V X Zgm)\
({d} x Z4m) as follows (with the first subscripts reduced modulo
(b—1) and if the second subscript is z, (z—4t) is reduced modulo

4):

1. Po(c,t) {((ci, 1+ (=1)*14+42), (Cigr, L4+(—1)1+1+42), (c,,
+ (=1 +4¢), (civ1,2+ (- 1)‘+1+4t))| -2<i<3
2}dU {((c:,0), (ci+1,2), (€5, 1), (i41,3)) | -1 < i < b— 3}
an

2. Ai(e,t) = {((ci 3+(=1)"* +4¢), (ci41, 3+(—1)"+ +48), (<,
4+ (1) + 4¢), (cip1, 4+ (1) + 42)) |0 < < 2 -
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2} U {((61)2)’ (c‘i+l)0)’ (Ci,3), (ci+11 1)) ' %_1 S ] S b"'z}

Also, for each t € Z,, and j € Z,, define a C,-factor,
P(c,t,7), of (Zy X Zm) \ ({00} X Z4y) as follows (with sub-
scripts similarly reduced):

P(d,t,7) ={((:,25 +4t), i+ 1,2 + 2+ 4t), (3,25 + 1 + 4t), (i +
1,25 +3+4t)) | i € Zy— }

Notice that for each ¢ € C, t € Z,, and each j € Z,, Pj(c,t)
and P(c,t,j) are Cy-factors of M(b,4m) \ ({d} x Z4m) where
¢ = Cy so the 4-cycles in

U Biet)u | Plet, )

ceC ceC
t€ZLe te€Z:
J€L2 JEZ:
form a Cy-frame of S(b, 4m). ]

Theorem 3 Let b be even, and let m be odd. There exists a
Cy-frame of M (b,4m) for all b # 2.

Proof Let B, S(b,4m), and T'(b,4m) be defined as in Theorem
2. Then a Cy-frame of M(b,4m) can again be produced by
combining Cy-frames of S(b,4m) and T'(b, 4m). We use the con-
struction in Theorem 2 to produce a Cy-frame of S(b, 4m). So
it remains to produce a Cy-frame of T'(b, 4m).

Partition the vertices Zy X Z4m into blocks D = {D;; | i €
Zs,j € Zom}, each of size 2, where D;; = {{i} x {27,25 + 1}}.
Let K(D; j, Di,;) be the complete simple bipartite graph on parts
D; ; and Dy,. Notice that

T(b,4m)= | K(Dij,Diy).
i,k€Zy
i<k
jleZZm
J#l
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Let K5y, be the complete graph with vertex set Z,,,. Let F'
be a 1-factorization of Ko, such that Fy,,—; = {{0,1}, {2,3}, ...
{2m—2,2m—1}} is a 1-factor in F. Let F’ = F\ Fy,_; and for
each T € Zyy—3, let F, be a 1-factor in F'. For each {f, g} € F!,
let K¢, be the complete simple bipartite graph on parts {f} xZ,
and {g} X Z,.

Let P be a proper-edge coloring of K({f}, {g}) such that the
edges in {{(f,d),(9,d)} | d € Z} receive different colors. All
such K ({f},{g}) produced by the 1-factorization must have the
same proper-edge coloring P, else a frame is not guaranteed. For
each d € Z;, let P; be the set of edges colored d in the coloring
P, and let P, = P;\ {(f,d),(9,d)} be a subset of P,.

For each edge e = {(f, k), (9,!)} € P, define a Cy-factori-
zation of K (Dj, D) consisting of the following C,-factor:

Tregt = {((21, k), (29,1), (2f + 1,k), (29 + 1,1))}.
For each d € Zy and = € Zgp,—o, let
My, = U K(Djk, Dgy),

eePy
{f.9}e(F7)

which has a Cy-factorization, P;., consisting of the Cy-factor

M(d, IL‘) = U T kgl

eePd_
{f.g}e(FL)
For each d € Z,, let
My= | My,
z€Lom-2

be the graph with vertex set (Zy X Zyy,) \ ({d} X Z4ym), which
has a Cy-factorization, P;, consisting of the 2m — 2 Cy-factors

Md)= |J M(d,z).

z€ZLam-2
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Notice that
T(b,4m) = | J My,
deZ,

each edge of which therefore occurs in exactly one cycle in

U M@, x).

deZy
T€Zam-2

Notice also that each M(d,z) is a Cy-factor of M(b,4m) \
({d} X Z4m) so the 4-cycles in

Ppy= | P

deZ,

form a Cy-frame of T'(b, 4m). |

4 Cy-Frames of M(b,n)

In this section, we produce Cy-frames of M (b, n) when each part
size is not a multiple of four.

Theorem 4 Let b # 2. There ezists a Cy-frame of M(b,n) if
and only if:

1. |E(M(b,n))| = 0 (mod 4),
2. (b—-1)n =0 (mod 4), and

3. at least on of b and n is even.

Proof It has been shown that conditions (1-3) are necessary.
So assume that conditions (1-3) are satisfied. Also assume that

n # 4m.
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Since (b — 1)n = 0 (mod 4) and n # 0 (mod 4), either
(b—1) =0 (mod4) or (b—1),n =2 (mod 4). If (b—-1) =
0 (mod 4), then b is odd; by condition 3), n must be even. So
n = 2 (mod 4). So we must produce a Cy-frame of M(b,n)
when (b —1) = 0 (mod4) and n = 2 (mod 4) and when
(b —1),n = 2 (mod 4). In either case, we can write n = 2m,
and the construction for both cases is the same.

Let F' be a near 1-factorization on the vertex set Z;, and for
each d € Z; let F,; be the near 1-factor in F’ with deficiency d;
so each vertex in Z; \ {d} occurs in exactly one edge in F). Let
F be a 1-factorization on the vertex set Z,, X Z,,, and for each
t € Zm, let F; be a 1-factor in F.

Let K(D., D,) be the complete simple bipartite graph on
the parts D, = {2} X Zom and Dy = {y} X Zy, 0 <z <y <
b—1. Let K(D;x, Dy;) be the complete simple bipartite graph
on parts D, = {z} x {2k,2k + 1} and D,; = {y} x {2[,2l +
1}, 0<z<y<b-1, kl€Z,

Notice that for each F; € F

K(D:, D)= |J K(Dzg D).
(ki)<F
t€Zm

For each {k,(} € E(F;), define a Cy-factorization of
K(D,; ;, Dy,;), consisting of the Cy-factor:

Mzkyl = {((Z‘, 2k)a (y, 21)’ (xw 2k + l)a (ya 20+ 1))}

For each d € Z, let
M;= |J K(D.,D,),
{zy}€E(F))
which has a Cy-factorization, Py, consisting of the m Cy-factors:

My(t) = U Tzkyl, fOr each t € Z,y,.

{z.y}eE(F)
{kl}eE(F:)
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Notice that
M(b,2m) = U M,,
deZy

each edge of which therefore occurs in exactly one cycle in

U Ma»).
deZ,
t€Zm

Notice also that each My(t) is a 2-factor of M (b, 2m)\ ({d} x
Zom,) so the 4-cycles in

P(b) = U Fa,

deZy
form a Cy-frame of M (b,2m). ]

5 CyFrames of AM(b,n)

We now investigate for which values of A does there exist a Cy-
frame of AM(b,n). The graph AM (b, n) is formed by replacing
each edge in M (b,n) with A edges.

The necessary conditions for the existence of a Cy-frame of
AM(b,n) are those found in Lemma 1 with a slight difference.
The number of parts must still be not equal to 2; the number of
edges must still be divisible by four; and (b — 1)n must still be
congruent to zero modulo 4. The condition that at least one of
b and n is even is a consequence of the fact that there are %lm
Cy-factors in a Cy-frame of M(b,n). In a Cy-frame of AM(b,n),
there must be %/\bn Cy-factors. If X is even, then there is no
parity restriction on b or n, but if A is odd, the parity restriction
stands.

Theorem 5 Let b # 2. There ezists a Cy-frame of AM(b,n) if
and only if:
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1. |[E(AM(b,n))| =0 (mod 4),
2. (b—1)n =0 (mod 4), and

3. if X is odd, then at least one of b and n is even.

Proof It has been shown that conditions (1-3) are necessary.
So assume that conditions (1-3) are satisfied. Notice that if
there exists a Cy-frame of M (b, n), then there exists a Cy-frame
of AM(b,7). Notice also that if A is odd, then a Cy-frame of
AM (b, n) exists if and only if there exists a Cy-frame of M (b, n).
So we assume that there does not exist a Cy-frame of M(b,n)
and A is even.

If a Cy-frame of M (b, n) does not exist, then one of the nec-
essary conditions for its existence must be violated. However,
that violation must not negate the existence of a Cy-frame of
AM(b,n) when A is even. The violation is that both b and n are
odd. Therefore, we must produce a Cy-frame of AM (b, n) when
A is even and both b and n are odd. Since (b—1)n = 0 (mod 4)
and n is odd, b =1 (mod 4).

If we can produce a Cy-frame of 2M (b, n), then we may re-
peat the construction % times to produce a Cy-frame of AM (b, n).
So all we need to show is that there exists a Cy-frame of 2M (b, n)
when 7 is odd and b= 1 (mod 4).

Let N’ be a near Cy-factorization of 2K}, on the vertex set
Zy (3], and for each d € Z;, let N} be the near Cy-factor in N
with deficiency d; so each vertex in Z;\ {d} occurs in exactly one
4-cycle in Nj. Each N} contains ¥ 4-cycles, (w, z,9, 2), with
w < %,9,2. For s € Zyy, let cy(s) be the s*h 4-cycle in N So
N; = {ci(s) = (w,z,9,2) | w,2,9,2 € Zp,w < T,Y,2, and s €

Zg:_l}.

Let F' be a near 1-factorization on the vertex set Z,, and for
each ¢t € Zy, let F] be the near 1-factor in F’ with deficiency ¢;
so each vertex in Z, \ {t} occurs in exactly one edge in F].
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Given c4(s) € N} and {f, g} € E(F}), define two 4-cycles on
the vertices {w, z,y,2} x {f} and {w, z,y, 2} x {g} as follows:

ma(s, f, 9) = {((w, f), (z, 9), (¥, F), (2, 9)),

((w,9), (=, f), (%,9), (2 ) |(w, 2,9, 2) € Ny, £, g € Zn}.
Also define a 4-cycle on the vertices {w, z,y, 2} x {t} as follows:
7a(s,t) = {((w, 1), (z,1), (%, 1), (2,1)) | (w,2,y,2) € Nyt € Zn}.
Let d € Zy, s € Zg-_;_x_, and t € Z,. Notice that

Pd(s’ t) = ﬂ.d(s:t) U U Wd(ss fa g)
{f.g}eE(F))

is a Cy-factor on the vertices {w, z,y, 2} X Z, for w, z,y, z € Z.
Notice also that for each c4(s) € Ny,

Pd(t)= U Pd(s,t)

cq(s)eN}

is a Cy-factor of 2M(b,n) \ ({d} x Z,).

For each d € Z, c4(s) = (w,z,y,2) € Nj and t € Zy, let
My(s,t) be the multipartite graph on vertices {w,z,y,2} X Z,
for w, z,y, z € Zs, induced by the edges of the Cy-factor Py(s,t).

Let
Myt)= | Mu(s,?)

SEZL,_
1

be the multipartite graph on vertices (Zy x Z,) \ ({d} x Z,) in-
duced by the edges of the Cy-factor Py(t).

Let
My = | Ma(t),
teln
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which has a Cy-factorization,

P, = U Pd(t),

teZy
consisting of ¢ Cy-factors.

Notice that
2M (b,n) = | J My,
deZ,

each edge of which occurs in exactly one cycle in

U Py(s,t).

deiy
€Ly,

=z
t€Zn

Notice also that each Py(s,t) is a Cy-factor of 2M (b, n) \ ({d} x
Z,) so the 4-cycles in

Py = A
deZ,

form a Cy-frame of 2M (b, n). [ ]
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