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Abstract

A Roman dominating function on a graph G is a function f :
V(G) — {0,1,2} such that every vertex u with f(u) = 0 is adjacent
to a vertex v with f(v) = 2. The weight of a Roman dominating func-
tion f is the value f(V(G)) = 3, cv(g) f(4). A Roman dominating
function f is an independent Roman dominating function if the set
of vertices for which f assigns positive values is independent. The
independent Roman domination number ir(G) of G is the minimum
weight of an independent Roman dominating function of G.

We show that if T is a tree of order n, then iz(T") < 4n/5, and
characterize the class of trees for which equality holds. We present
bounds for ¢r(G) in terms of the order, maximum and minimum
degree, diameter and girth of G. We also present Nordhaus-Gaddum
inequalities for independent Roman domination numbers.
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1 Introduction

The mathematical concept of Roman domination is the oldest known type
of domination in which mobile guards are used, and has its historical roots
in the time of the ancient Roman Empire. Some of the earliest references
to this protection strategy can be found in [2, 9, 10, 11]. Also see (7] for a
brief summary of this background.

Cockayne, Dreyer, Hedetniemi and Hedetniemi [5] were the first authors
to study Roman domination in graphs. Let G = (V(G), E(G)) denote a
simple graph of order n. For a function f : V(G) — {0,1,2}, let (Vo; Vi; V2)
be the ordered partition of V(G) induced by f, where V; = {v € V(G) :
f(v) = i} and |V;| = n; for i = 0,1,2. There is a 1 — 1 correspondence
between the functions f : V(G) — {0,1,2} and the ordered partitions
(Vo; Va; V&) of V(G), hence we write f = (Vo; Vi; Va).

A function f = (Vp;Vh;V2) is a Roman dominating function, or just
RDF, if every vertex u € Vp is adjacent to at least one vertex v € Va.
The weight of an RDF is the value f(V(G)) = }_,cv f(u). The Roman
domination number of a graph G, denoted by yr(G), is the minimum weight
of an RDF on G. A function f = (Vp; Vi; V2) is called a yg-function if it is
an RDF and f(V(G)) = vr(G).

An RDF f = (Vp, V1, V2) in G is an independent RDF, or just IRDF,
if V1 UV, is independent [1]. The independent Roman domination number
ir(G) of G is the minimum weight of an IRDF of G. We refer to an IRDF
with minimum weight as an ¢{g-function.

Cockayne et al. [5] mentioned the study of independent Roman dom-
inating functions in graphs as an open problem, which was subsequently
studied by Adabi, Targhi, Jafari Rad and Moradi in [1]. We continue the
study of independent Roman dominating functions. In Section 3.1 we ob-
tain an upper bound for the independent Roman domination number of a
tree T in terms of its order. We then prove in Section 3.2 that in general
there is no non-trivial upper bound for the independent Roman domina-
tion number of a graph in terms of its order. In Section 4 we obtain upper
bounds for this parameter in terms of order, maximum and minimum de-
gree, diameter and girth, and in Section 5 we give some Nordhaus-Gaddum
inequalities for the independent Roman domination number of a graph and
its complement. We conclude with a few open problems in Section 6.
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2 Definitions and previous results

For notation and graph theory terminology in general we follow [4, 6].
Specifically, we denote the open neighbourhood of a vertex v of G by Ng(v),
or just N(v), and its closed neighbourhood by N[v]. For a set S C V(G),
N(S) = UpesN(v) and N[S] = UyesN[v]. The degree degz of a vertex z
denotes the number of neighbours of z in G. A set S C V(G) is a dom-
inating set if N[S] = V(G). The domination number v(G) of G is the
minimum cardinality of a dominating set of G. A set S C V(G) is an inde-
pendent dominating set if S is independent and dominating; the minimum
cardinality of such a set is the independent domination number i(G). It is
obvious that ig(G) < 2i(G) for any graph G. For S C V(G) we denote the
subgraph of G induced by S by G[9].

We make use of the following results. The second part of the statement
of Lemma 1, V3 C VJ, is implicit in the proof given in [1].

Lemma 1 [1] Let f = (Vo;Vi;V2) be an RDF of a graph G. If V, is
independent then there exists an IRDF g = (V§; V{;VJ) of G such that
w(g) < w(f) and V3 C V4.

The next statement follows by taking f = (&; V(G); @) and applying
Lemma 1.

Observation 2 (1] For any graph G of order n, ir(G) < n.

It is also helpful to notice that if X and Y = V(G) — N[X] are inde-
pendent sets, then f = (Vo; Vi; V2) with V4 =Y and V2 = X is an IRDF of
G and thus ig(G) < 2|X| +|Y|. This observation helps us to determine ig
for paths, cycles and complete bipartite graphs. Note that the inequality
in Proposition 3(z) is strict if and only if n =1 (mod 3).

Proposition 3 (%) [1] IfGn=Pp,n>2, or G, =Cy, n > 3, then
ir(Gn) = TR(Gn) = [X52] < 2v(G,) = 2i(Cn) = 2[3].

(i) Foranyn2>2m 21, ip(Kmn) =m+1=14G) + 1.

Theorem 4 [3] If T is a tree of order n > 3, then yr(T) < . Equality
holds if and only if there exists a partition V(T) = X1 U---U X of V(T)
such that G[X;]) =& P; for each i, and the subgraph induced by the central
vertices of these paths is connected.
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3 Upper bounds in terms of order

In this section we first present an upper bound for the independent Roman
domination number of a tree in terms of its order. We then prove that the
bound of Observation 2 is the best possible for general graphs.

3.1 Trees

A stem in a tree T is a vertex that is adjacent to a leaf. Let L(T') and S(T)
be the set of all leaves and the set of all stems of T respectively. We begin
with a simple lemma.

Lemma 5 Let T be a tree of order at least three. Then

(i) T has an ig-function f = (Vo; Vi; Vo) such that L(T) NV, = @, end
(i) for any IRDF f = (Vo;V4;V2) of T, i N S(T) = @.

Proof. (i) Let f = (Vo;V4; Va) be an ig-function such that |L(T) N V5|
is minimum and suppose u € L(T) N V. Let v be the stem adjacent to
u. Then f(v) = 0. Now if f(w) = 2 for some w € N(v) — {u}, then
g = (Vo; V1 U {u}; Vo — {u}) is an IRDF such that w(g) < w(f), which
is impossible. Hence N[v] N Vo = {u}. Let U = V; N N[v] and consider
the function f’ = (V§; V{; V3) defined by f'(a) = f(a) if a € V(T) — N|[v],
f'(v) = 2 and f’(a) = 0 if a € N(v). Then f’ is an IRDF of T and
w(f’) = w(f) — |U|. Thus, by the minimality of f, U = @. But then f’ is
an ig-function such that |L(T) NV{| < |L(T) N V3|, contradicting the choice
of f.

(4) Ifv € V1N S(T) and u is a leaf adjacent to v, then f(u) = O since
V1 UV, is independent. But then V, does not dominate Vp, a contradiction.
[ |

We next consider trees with diameter at most four.

Lemma 6 If T has order n > 3 and diamT < 4, then ip(T) < &, and
equality holds if and only if T = Ps.

Proof. If diamT = 2, then T has a dominating vertex and ig(T) = 2 <
42, If diam T = 3, then T has exactly two stems z and v, and all the other

354



vertices are leaves. Thus ip(T’) = 2+min{degu — 1,degv—1} < 1+§ < 42
since n > 4.

Now assume that diam T’ = 4. Let P = z,w, v, u,y be a diametrical path
in T". Let N(v) consist of k; leaves and k; stems, and let |V(G)\N[v]| = m.
Then m > ky and n = 1+m + k; + k2. Each vertex in V(G)\N[v] is a leaf
of T. Let f = (Vp; V1; V2) be an ig-function of T such that L(T)N V2 = @.
(Such a function exists by Lemma 5 (z).) By Lemma 5 (i), f(u) = 0 or

flu)=2.

o If f(u) = 2, then f(v) = 0 and thus f(u') = 2 for each stem v’ €
N(v), f(€) = 1 for each leaf £ € N(v), and f(y’) = 0 for each leaf
y' € V(G)\N[v]. Thus w(f) = k; + 2k,.

o If f(u) =0, then f(2) = 2 for some z € N(u), and by the choice of f,
f(v) = 2. Then f(u') = 0 for each v’ € N(v), so f(y') =1 for each
leaf y' € V(G)\N[v]. Thus w(f) =m +2.

Therefore igr(T) = min{k; + 2ka,m + 2}. If k1 + 2ks < m + 2, then
m > ki + 2k — 2 and thus n > 2k; + 3k3 — 1. Hence

ki + 2k, 2ko 4n .
< < — =2
Dtk -1~ -1~ Snek22

Moreover, equality holds if and only if k; = 0, k3 = 2 and n = 3ky+2k1—1 =
5, that is, T = P;. f m + 2 < k1 + 2ko, then

ir(T) <

. m+ 2 ki + 2ke 4n
T < < n<—
") S iR S Tt 1" S 5

and equality holds if and only if k1 =0, k2 = 2 and m + 2 = k; + 2k; = 4,
that is, m = 2 and thus T = P;. u

We now state and prove our main result.

Theorem 7 For any tree T on n > 3 vertices, ir(T) < %", and equality
holds if and only if

P1 there exists a partition V(T) = X1 U--- U Xy of V(T) such that

G[X;] & Py for each i, and the subgraph induced by the central vertices
of these paths is connected.

Proof. Suppose the statement is not true and let T be a tree of smallest
order n for which it does not hold. By Lemma 6, diamT > 5. Let z,y be
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two leaves with d(z,y) = diam T and let P be the diametrical  — y path.
Let w;y, w, v, u be distinct vertices such that wy, w, v, u,y is a subpath of P;
note that w; # z. Let T}, ¢ = 1,2, be the components of T' — vw, where
w € V(T1). Say n; = |V(T3)|, i = 1,2. By the choice of T, ip(Ti) < 4.
Moreover, diam 7> < 4 and thus by Lemma 6, ir(T2) = 422 if and only if
T, = P; (in which case v is the central vertex of T2), while ig(T1) = 4—'5"~ if
and only if P1 holds.

Let f; be an ig-function for T} such that fi(£) < 2 for each ¢ € L(T);
such functions f; exist by Lemma 5 (7). In particular, if P1 holds for T},
let fi(z) =2 if z € S(T}) and f(z) = 0 otherwise.

First suppose that min{f;(w), f2(v)} < 2. Then f, U f; is an RDF
of T such that V; is independent, in which case Lemma 1 implies that
ir(T) S w(fiV fo) = 2. Hig(T) < 4, then v < 4 and, by Theorem 4,
T does not satisfy P1. Suppose ig(T) = 4. Then ip(T;) = 4, i=1,2,
P1 holds for Ty, and T = P;. Let H = v,...,v5 be the copy of P; in T}
that contains w. By the choice of f;, fi(v1) = fi(vs) = fi(vs) = fa(v) =0
(since v is the central vertex of T3), fi(vz) = fi(vs) = 2, and f(a) =2if a
is a stem of T5.

o If fi(w) = 0 and w = v3, then P1 holds for T. If fi(w) = 0 and
w # vs, then we may assume without loss of generality that w = v;.
Define the function g on T by g(a) = fi(e) if a € V(Ty) — V(H),
9(vs) = 1 = g(a) if a € L(T}), g(vs) = g(v) = 2 and g(a) = 0
otherwise. Then g is an IRDF of T and w(g) < w(f1 U f2) = ir(T),
a contradiction.

o If fi(w) = 2, we may assume that w = v3. Define the function ¢’
on T by ¢'(e) = fi(a) if @ € V(T1) — {w,u1}, g(v1) = 1 = g'(a) if
a € L(Ty), ¢'(v) = 2 and ¢’(a) = 0 otherwise. Then g’ is an IRDF of
T and w(g') < w(f1U f2) = ir(T), again a contradiction.

Thus if min{fi(w), f2(v)} < 2, then ir(T) < % and equality holds
if and only if P1 holds, contrary to our assumption that the statement
does not hold for T. Therefore fj(w) = fo(v) = 2. By the choice of f;,
w ¢ L(T1), v ¢ L(T2) and T, # Ps. Thus degr(w),degr(v) > 3. We also
note that now P1 does not hold for T (otherwise we would have f3(v) = 0)
and so, by Lemma 6, w(f2) < ﬂgl. ‘We now prove four facts.

Fact 1. If degyv = 3, then ip(T) < 42.

Proof of Fact 1. Define g on V(T3) by g2(v) = g2(a) = 0 if a is a leaf of
T, at distance two from v, g2(a) = 2 if a is a stem of T, adjacent to v, and
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g2(a) =1if a is a leaf in T, adjacent to v. Since degr, v = 2, g; is an IRDF
for T, with w(gz) = 3 if v is adjacent to a leaf and w(g;) = 4 otherwise. In
the latter case T3 has at least six vertices, and in elther case w(gg) < i
Thus f U go is an IRDF of T of weight less than % and so ig(T) < 42

We therefore assume that degy v > 4 and proceed with Fact 2.

Fact 2. If Nr,(v) contains a vertex c of degree at least three, then
ir(T) < -45—n

Proof of Fact 2. Without loss of generality assume that ¢ = u. Thus
there are at least two leaves adjacent to u, one of which is y; say %’ is
another leaf adjacent to u. If each vertex in Nr,(v) has degree at least
three, then T has at least 2 degy, v leaves at distance two from v. Since
fa(v) = 2, it follows that fa(a) = 0 if a € N, (v) and thus fa(a) = 1 if
a € L(T3). Hence w(fz) > 2 + 2degy, v. But then the function go, defined
on V(T3) by g2(a) = 2 if a € Np,(v) and gz(a) = 0 otherwise, has weight
w(g2) = 2degp, v < w(f2) = ir(T2), which is impossible.

Therefore there is vertex b € Nr,(v) such that degb < 2. Delete b, 3’
and (if it exists) the leaf b’ adjacent to b from T to obtain the tree 73. By
the choice of T, ig(T3) < 4—(1';—21. Let f3 be an ig-function of T3 such that
f3(€) # 2 for each € € L(T3); f3 exists by Lemma 5 (i). Since u is adjacent,
in T3, to the leaf y, Lemma 5 (i¢) implies that f3(u) # 1. Hence f3(u) = 2
or f3(u) =

o If f3(u) = 2, then f3(v) = 0. The function g3 defined by g3(a) = f3(a)
ifa € V(T3), 93(y') = 0 and g3(b) = deg b is an IRDF of T with weight

at most —(--J +degh < 42

o If fa(u) = 0, then f(z) = 2 for some z € N(u). By the choice of
fa, f3(v) = 2 while f3(z) = 1 for each leaf z adjacent to u. Then,
similar to g3, the function h3 defined by h3(a) = f3(a) if @ € V(T3),
ha(b) = 0, ha(b') = 1 if V' exists, and h3(y’) = 1 is an IRDF of T with
weight less than 4—5"-

Therefore ip(T) < 4. o

Since the statement does not hold for T, Fact 2 implies that every vertex
in N1,(v) has degree at most two. In particular, degu = 2. Consider
arbitrary v’ € Np(w)\{w,} and any leaf £ of T at maximum distance from
w such that v’ lies on the w—£ path in T. Since P is a diametrical path of T,
d(w,£) < d(w,y) = 3. Moreover, if d(w, £) = 3, then we may interchange
the roles of v and v/, and find that v’ has exactly the same properties
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as those deduced above for v. We now (weakly) partition N(w)\{v,w;}
into the three subsets A; = N(w) N L(T), A2 = {a € Nw)\{v,w} :
N(a)\{w} C L(T)} and A3 = N(w) — {v,w1} — A1 — Az, where some of
these sets may be empty. Thus each vertex in A3 plays the same role as
v and thus has at least three neighbours other than w. Let a; = |Aj,
i=1,2,3. We proceed with Fact 3.

Fact 3. If T — w has no component F € {Kj, K2}, then ig(T) < 4¢.

Proof of Fact 3. Now A; = & and degra > 3 whenever a € A;. Hence
ag + az = degw — 2 > 1. Let Ty; and Tz be the two subtrees of Th —
ww,, where w € V(T11). By the choice of T, ip(Ty;) < ¥l and
ip(Th2) < Mz—‘-’-n. Let fi2 be an ig-function for T2. Define g; on V(1)
by g1(a) = fi2(a) if @ € V(Ti2), g1(a) =2 if a € A3 U A3, g1(a) =0if ais
a leaf or stem adjacent to some vertex in Ap U A3, g1(a) =1ifa is a leaf at
distance two from some vertex in A3. Furthermore, g;(w) = 0. It follows
that g, is an IRDF for T} with weight at most 1'5‘-‘-. Therefore g, U f is
an IRDF for T with w(g1 U f2) = w(g1) +w(f2) < 43 + 482 = 42 (since
w(fz) < 442), as desired. o

We conclude that T' — w has a component F € {K;,K3}. Say r is the
vertex of F' adjacent to w, let p = |V(F)| and define Ty =T - F — {u,y}.
Then ip(Ty) < 4°=2=2),

Fact 4. If f, is an ig-function of Ty with max{f'(v), f'(w)} = 2, then
ir(T) < 4?"’

Proof of Fact 4. If f{(v) = 2, then we define g4 on V(T') by gs(a) = f(a)
if a € V(Ty), g4(u) = 0, gs(y) = 1 and g4(r) = p. This implies that
in(T) < ir(Ty) + %i—;- < 42 since p € {1,2}. Similarly, if fij(w) = 2 we
obtain ir(T) < 4. o

Therefore no ig-function of T} assigns the value 2 to v or w. Let f4 be
an i g-function of T} such that f,(£) < 2 for each leaf of Ty. Then fs(w) # 2
and fy(v) # 2. If f4(v) = 1, then v is not a stem (Lemma 5 (i¢)). Then
each a € N1, (v) — {w} has degree exactly two (as concluded after the proof
of Fact 2), and fs4(a) = 0, by independence. But then f4(£) = 2 , where ¢
is the leaf adjacent to a, contrary to the fact that f4 satisfies the condition
in Lemma 5 (). Therefore f4(v) = 0. Since fs(w) < 2, fa(u') = 2 for some
o' € N(v) — {w, u}; by the choice of f4, v’ ¢ L(T) and thus v’ is a stem.

Let Ty; be the two components of T3 — vw, where v € V(Ty2), and let
f4i be the restriction of f; to Ty;. Since fa(w), fa(v) < 2, f4i is an IRDF
for Ty;, i = 1,2. Since degyv > 4, degr,, v = 2. The arguments in the
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preceding paragraph show that fs2(a) = 2 if and only if a is a stem of T},
adjacent to v, fso(a) = 1 if and only if a is a leaf of T}, adjacent to v,
and fso(a) = 0 otherwise. Thus if v is adjacent in Ty to k; leaves and k;
stems, then w(fs2) = k1 + 2k,. Define the function h on Ty3 by h(v) = 2,
h(a) = 1 if a is a leaf at distance two from v, and h{a) = 0 otherwise.
Then w(h) = 2+ k2 < ky + 2k; = w(fy2) since ky + ky = degp, v > 2.
Moreover, since f41(w) < 2, fs1 Uh is an RDF of T such that {a € V(T}) :
(fa1Uh)(a) = 2} is independent. By Lemma. 1 there exists an IRDF h’ of T}
such that w(h') < w(fa U h) = w(fa) +w(h) < w(fa) + w(fa2) = w(fs)
and h'(v) = h(v) = 2. Since f; is an ig-function of Ty, equality holds
throughout, hence w(h’) = w(f). But now h’ is an ig-function of Ty such
that h'(v) = 2, and this contradicts Fact 4.

We have therefore shown that the bound holds for all trees of order at

least three. We have also shown that P1 holds whenever ip(T) = 4, while
the fact that P1 does not hold if iz(T) < 42 follows from Theorem 4. The
proof of the theorem is therefore complete ]

3.2 General graphs

We next show that in general there is no upper bound better than the
bound of Observation 2 for the independent Roman domination number in
a graph G.

Proposition 8 For any t € (0,1) there are an integer n and a connected
graph G on n vertices such that ig(G) > tn.

Proof. Lett € (0,1). Since

LN
there is a rational number -2+ such that -2+ 751 > t. Let Gy = K, where
m > 3p, and let G be the graph obtained by adding m leaves to each vertex
in Gy. It is obvious that ig(G) = 2 + (m — 1)m. Let n = m? + m. Since
m? > 3pm > 2pm + m, we obtain m? + p(m?) > 2pm + m + p(m?) and so
m?2 +p(m2) m—pm > pm +p(m2) Now (p+ 1)(m — 1)m > p(m + m?)
and thus (m — 1)m > p_H(m + m). Therefore ig(G) > tn. [ ]

If z is a vertex of maximum degree in a graph G, then (N(z); V(G) —
N{z]; {z}) is an RDF for G and by Lemma 1 we obtain the following bound,
in which equality holds for complete bipartite graphs, for example (see
Proposition 3).
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Proposition 9 For any graph G of order n, igp(G) < n — A(G) + 1.

Since the chromatic number x(G) < 1+ A(G) for any graph G, Proposi-
tion 9 links the independent Roman domination number and the chromatic
number as follows.

Corollary 10 For any connected graph G of order n > 1, ig(G) < n —
x(G) + 2, with equality if and only if G = K.

Corollary 11 Ifk is an integer such that k > zrfy=y, thenir(G) < Eln,

Proof. Sincen < k(A(G)-1), kn < k(A(G)—-1)+(k—1)n and Proposition
9 gives ir(G) <n— A(G)+1 < &ln. ]

The special case k = 5 in Corollary 11 implies that if n < 5(A(G) - 1)
and A(G) > 1, then ir(G) < 4.

Lemma 12 Let G be a graph with A(G) = 3. For any edge e € E(G),
ir(G) < ir(G—e)+ A(G) - 3.

Proof. Let e = zy € E(G) and f be an IRDF for G —e. If {f(z), f(y)} #
{2}, then igr(G) < ir(G —e) by Lemma 1. So we may assume that f(z) =
f(y) = 2. We define g on V(G) by g(v) = f(v) if v € (N[z]\{3}), 9(z) = 0,
and g(v) = 1if v € (N(z)\ {y}. Then g is an RDF for G, and by Lemma
1 the result follows. ]

Since any connected graph contains a spanning tree, the following result
is a direct consequence of Theorem 7 and Lemma 12.

Corollary 13 If G is a cubic graph of order n, then ip(G) < 4.

The bound in Corollary 13 also follows from the bound i(G) < Z* for a
cubic graph G # K33 of order n, which was proved in [8]. Also see Problem

4 in Section 6.
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4 Upper bounds in terms of degree, diameter
and girth

In this section we present simple upper bounds for ig(G) in terms of max-
imum and minimum degree, diameter and girth. We begin by improving
the bound given in Proposition 9 for some graphs.

Proposition 14 Ifv is a vertez of a graph G such that k = A(G—N[v]) >
2, then ig(G) <n—degv—k+2.

Proof. Let u be a vertex of G — N[v] of degree k. The function
" f = (N(w)UN(@);V(G) — (N[u] U N[)); {u,v})

is an RDF of G such that {u, v} is independent and w(f) = 4+ (n—degv—
2 — k) =n — deg —k + 2. The result follows from Lemma 1. ]

Corollary 15 (i) Letv be a vertezx of a graph G such that degv = A(G),
and let k= A(G — N[v]). Ifk 2 2, then ir(G) <n—A(G) -k + 2.
(#) If G is a graph of order n and diam G > 3, then ig(G) < n—246(G)+2.
(¢42) If G is an r-reqular graph of ordern with1 < r < 1‘-‘3‘—1, then ig(G) <
n-—r.
(iv) If G is a cubic graph of order n > 10, then igr(G) < n — 4.

Proof. (i) Immediate from Proposition 14.

(79) Let u and v be two vertices with d(u, v) > 3 and apply Proposition
14.

(¢44) Let v be any vertex of G. There are at most r(r—1) edges between
N(v) and G — N[v]. Let G1 = G — N[v]. Then

(n—r=-1)
2

|E(Gy)| > 7 —r(r - 1).

The restrictions on = imply that (r — 1)(n — 1 — 3r) > 0. Therefore (n —
r—1)(r=1)—2r(r—1) >0 and so

(ool poysnorot
We deduce that 1 _|V(Gy)
n—r—1 1
|E(G1)| > 2 T2
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hence k = A(G) 2 2.

(iv) Let v be any vertex of G and note that |[N[N[v])| < 10. If V(G) -
N[N[v]] # @, then k = A(G — N[v]) = 3 and the result follows from
Proposition 14. If V(G) — N[N[v]] = @, then n =10 and G — Nfv] is a 2-
regular graph of order six, i.e., G— N[v] € {Cs,2K3}, hence ir(G—N[v]) =
4 and the result follows. |

We next give some bounds in terms of diameter and girth.
Proposition 16 (i) For any graphG of ordern, ig(G) < n—[4amG =17,
(i) For any graph G of order n and girth g(G), [gﬂ%&ﬂj < ir(G) £

n— [49=2].

Proof. (i) Let P be a diametrical path in G and let f be an igz-function
of P. By Proposition 3, w(f) = |2¢+4emG) | We define h on V(G) by
h(z) = f(z) if z € V(P), and h(z) = 1 otherwise. Then % is an RDF for
G. By Lemma 1, ig(G) < w(h) =n— [‘—H%‘;‘m—a] The proof of (i) is
similar. |

5 Nordhaus-Gaddum type bounds

We now present some Nordhaus-Gaddum inequalities. Let §,8,A, A denote
the minimum and maximum degrees of G and G, respectively.

Proposition 17 For any graph G of order n > 3,
5<ir(G) +ir(G) < n+3.

Equality holds in the lower bound if and only if G or G is K3, or (5,A) or
(6,A) = (1,n — 1), and in the upper bound if and only if G or G is Cs or
ZKs,.

p)

Proof. Since n > 3, ir(G),ir(G) > 2. If ir(G) = 2, then there is a
vertex z € V(G) such that N[z] = V(G). But z is an isolated vertex in
G, hence ir(G) > 3. Similarly if iz(G) = 2, then ig(G) > 3. We deduce
that ig(G) + ir(G) > 5. Suppose equality holds and assume ip(G) <
ir(G). Then ig(G) = 2 and ig(G) = 3, and as above G has a vertex z of

degree n — 1. If G = K3, then ig(G) + ir(G) = 5, so suppose n > 4. If
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6(G —z) 2 1, then G — z has order at least three and no universal vertex,
hence ig(G — z) > 3 and ig(G) > 4, which is not the case. Hence G — z
has an isolated vertex and §(G) = 1.

For the upper bound, by Proposition 9,

ir(G) +ir(G) < (n - A(G) +1) + (n — AG) + 1)
=n—AG) +6G)+3<n+3.

If ir(G)+ir(G) = n+3, then equality holds throughout the calculation,
and 6(G) = A(G). Hence G is k-regular for some k. We may assume
that £ < 251, since the argument is symmetric in G and G. Also, since
ir(Ky.) +ir(Kn) = n + 2, we may assume that & > 1. From equality we
obtain ig(G) = n —k+ 1 and ig(G) = k+ 2. Let v € V(G). If some
vertex u € V(G)\N|[v] has at least two neighbours in V(G)\N[v], then by
Corollary 15(i4%), ig(G) < n — k, a contradiction. Hence every vertex not
in N[v] has at least k — 1 neighbours in N(v). The same argument applies
to G, hence, in G, each vertex in N(v) has at most one neighbour outside
Nv].

Counting the edges joining N(v) and V(G)— N|[v] from both sides yields
(k—1)(n—k —1) < k, which simplifies to n < ¢£; + k+1 for k > 1. Since
n > 2k + 1, we have 2k + 1 < ££5 + k + 1, which requires k < 2. If k = 2,
then n < 5 and n > 2k + 1 = 5, which implies that G = C5. The only
1-regular graph of order n is G & 3 K3, and ir(G) +ir(G) =n +3. ]

Proposition 18 If G is a connected graph of order n with diamG > 3,

then _
6 <ir(G) +ir(G) <n-46(G) +4.

These bounds are sharp.
Proof. Since diam G > 3, we obtain ig(G) > 3. Also ir(G) > 3 since G

is connected. The lower bound follows. For the upper bound, Proposition
9 and Corollary 15(i¢) imply

ir(G) +ir(G) £n—-25(G)+2+n-AG) +1
=n-26G)+2+6(G) +2
=n-4§G)+4.

To see the sharpness of both bounds consider the cycle Cs. |
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6 Open problems

As mentioned in Section 2, ig(G) < 2i(G) for any graph G. Paths and
cycles of order n # 1 (mod n) are examples of graphs for which equality
holds, but equality holds for other graphs as well.

Problem 1 Characterize the class of graphs G (or the class of trees, or
the class of cubic graphs, etc.) such that ir(G) = 2i(G).

It is easy to see that the only graphs G such that ig(G) = i(G) are
the edgeless graphs. Complete bipartite graphs are examples of graphs for
which ig(G) = i(G) + 1; in fact, if G has an i-set X such that some v € X
is adjacent to all vertices of G — X, then ig(G) = i(G) + 1. Conversely,
if ir(G) = i(G) +1 and f = (Vo,V1,V2) is an ig-function of G, then
Vil + [Va| = V1 U V2| 2 i(G) = ir(G) —1 = |Vi| +2|V2| - 1, 50 || < 1.
But V; = @ if and only if G is edgeless. Hence |V,| = 1 and thus all vertices
in Vp are adjacent to the single vertex in Va. Therefore ig(G) = i(G) + 1
if and only if G has a vertex v such that degv > % and V(G) — N[v] is
independent or empty.

Problem 2 Characterize the class of graphs G (or the class of trees, or the
class of cubic graphs, etc.) such thatig(G) = i(G)+k for (fived) 2 < k < 4.

Problem 3 Characterize the class of graphs G (or trees) with ig(G) =
vr(G).

Problems 1 and 2 were addressed, with some success, in (1], but the
results there are in terms of the existence of independent sets with various
properties and do not give a description of the classes of graphs in terms of
easily determined properties.

It was also proved in [1] that if A(G) < 3, then ir(G) = vr(G), so
these parameters are equal for cubic graphs. As stated in Corollary 13,
ir(G) < % for a cubic graph G of order n. It is also known [§] that
i(G) £ 35% for a cubic graph G # K3 3 of order n, and equality is only known
to hold for the Cartesian product K50 Kp. However, ig(K33) =4 < 48
and ir(KsO K3) = 6 < 12, 50 it is unlikely that there exists a cubic graph
G with ig(G) = 2. Is it possible that ir(G) < 33’1 or even that ig(G) < 8
except for a finite number of small graphs?

Problem 4 Find a sharp bound for ig and thus yr for cubic graphs.
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