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ABSTRACT. Let G = (V, E) be an undirected graph and let 7 =
{V1,V2,...,Vi} be a partition of the vertices V' of G into k blocks V;.
From this partition one can construct the following digraph D(r) =
(w, E(x)), the vertices of which correspond one-to-one with the k
blocks V; of 7, and there is an arc from V; to Vj if every vertex in Vj is
adjacent to at least one vertex in V;, that is, V; dominates V;. We call
the digraph D(=) the domination digraph of . A triad is one of the
16 digraphs on three vertices having no loops or multiple arcs. In this
paper we study the algorithmic complexity of deciding if an arbitrary
graph G has a given digraph as one of its domination digraphs, and in
particular, deciding if a given triad is one of its domination digraphs.
This generalizes results for the domatic number.
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1 Introduction

A domatic partition of a graph is a partition of the vertex set into blocks
such that each block dominates the whole graph, or in other words, each
block dominates every other block. It is well-known that any graph without
isolated vertices has a domatic partition into two blocks, but Garey and
Johnson [2] showed that it is N"P-complete to determine if a graph has a
domatic partition into three blocks. In this paper we generalize these ideas,
relaxing the requirement that every block dominates every other block.

We will use the following notation. A graph G = (V,E) has order
n = |V|. For a vertex v € V, the open neighborhood of v is the set N(v) =
{u €V |uve E}, deg(v) = |N(v)| and the closed neighborhood is the
set N[v] = N(v) U {v}. For a set S C V, the open neighborhood of S is
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the set N(S) = U,es N(v), and the closed neighborhood of S is the set
N[S] = N(S)U S. A set S is independent if no two vertices in S are
adjacent, and a dominating set if N[S] = V. Given two disjoint sets S and
S’, we say that S dominates S’, denoted S = &', if S’ C N(S); that is,
every vertex in S’ is dominated by, or is adjacent to, at least one vertex
in S. We use the notation S # S’ to mean that S does not dominate S’.

Given two vertices u,v € V, d(u,v) denotes the distance between v and
v; ecc(u) denotes the eccentricity of vertex u, which equals the maximum
value of d(u,v) over all vertices v € V; and diam(G) denotes the diameter
of the graph.

Let D = (V, A) be a directed graph (or digraph) with a set of vertices V
and a set A CV x V of directed edges, called arcs. If (u,v) € A, we write
u — v and say u dominates v. A digraph D = (V, A) is complete if for
every u,v € V, either v — v, or v — u, or both. A complete digraph D is a
tournament if for every u,v € V, either u — v, or v — u, but not both. A
complete digraph D is transitive if its vertices can be ordered uy,uz, ..., un,
such that u; — u; € A if and only if ¢ < j. A diad or iriad is a directed
graph having two or three vertices, respectively, with no loops (u — u) or
multiple edges (two or more arcs © — v and © — v). It is known (and
easily shown) that there are exactly three diads and 16 triads.

Let m = {V}, Va,..., Vi} be a partition of the vertices V' of a graph G.
From this partition we can construct a digraph D(w) = (w, E(7)), the
vertices of which correspond one-to-one with the & blocks V; of 7, and
there is an arc from V; to V;, denoted V; — V;, if V; = V;. We call the
digraph D(r) the domination digraph of 7, and we say that 7 is a D(w)-
partition. Let D(G) denote the family of all domination digraphs obtained
from arbitrary partitions 7 of the vertices of a graph G. This concept was
introduced in [4].

In this paper we consider the general question: what can you say about
the graphs D(7) € D(G)? In particular, given an arbitrary triad, say T,
is T € D(G)? We show that the problem is polynomial-time solvable for
some T, and N'P-complete for some T'.

2 Diads

There are just three diads: (i) the diad denoted K, having no arc, (ii)
the diad denoted ARC(2) having one arc, and (iii) the diad denoted K
consisting of two vertices u and v and the two arcs « — v and v — u. For
any graph G it is easy to determine if any one of the three diads is in D(G).

We will need the following, oft-cited, theorem due to Ore [5].
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Theorem 1 (Ore) The complement V — S of any minimal dominating set
S in a graph G without isolated vertices contains a dominating set.

Theorem 2 For any graph G,

(a) Kz € D(G) if and only if diam(G) > 3 or G is disconnected;
(b) ARC(2) € D(G) if and only if G is neither complete nor empty;
(c) K2 € D(G) if and only if G has no isolated vertex.

Proof. (a) If 7 is a K,-partition, then there are vertices u; € V; and
ug € V3 such that Vo # u; and Vi # up. That is, N[u;] C V; and
Nlug] € V2. Thus, u; and u, are at distance at least 3. Conversely, if u;
and u; are at distance at least 3, then {N[u,], V — N[u,]} is a Kz-partition.

(b) If G is neither complete nor empty, then there exists vertices x
and y such that z is not adjacent to y but y is not isolated. In this case,
{V - {y}, {v}} is an ARC(2)-partition.

(c) It follows from Ore’s Theorem, that if S is a minimal dominating set
in a graph G without isolated vertices, then {S,V — S} is a K,-partition. O

3 Triads

We consider the algorithmic complexity of the problem of deciding if an
arbitrary graph G has a given triad, say T, as one of its domination digraphs,
that is, if T € D(G). That is, we will investigate the 16 decision problems
corresponding to the 16 triads. Let us denote by TRIAD one of these 16
digraphs. The general decision problem can be stated in the following form:

TRIAD

INSTANCE: Graph G = (V| E).

QUESTION: Does G have a TRIAD-partition = = {4, B,C},
that is, such that D(7) is isomorphic to TRIAD?

Thus, for example, when we refer to one of the 16 triads, say SINK EDGE,
we mean both the triad itself, and the corresponding decision problem. The
reference should be clear by context.

Figure 1 below illustrates the 16 triads, each with an assigned name,
- and the status of the associated decision problem.

In the next section we give the proofs for the triads where polynomial-
time algorithms are known, and in Section 5 we give the proofs for the
triads which are known to be A'P-hard.
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4 Polynomial Triads

4.1 SINK EDGE

Theorem 3 Let G = (V, E) be a graph of order n. SINK EDGE € D(G)
if and only if n > 4, and there exists an edge wv € E such that 2 <
deg(u),deg(v) <n —2.

Proof. SINK EDGE € D(G) if and only if the vertices of G can be
partitioned into three sets {4, B,C} such that: A = B, B= A, C = A,
andC= B,but A# Cand B# C.

Assume SINK EDGE € D(G). Then there exists an edge uv with
u € A and v € B. Since neither u nor v dominates C, it must be that
deg(u), deg(v) < n — 2. Since C dominates both u and v, it must be that
deg(u),deg(v) > 2.

Conversely, assume G contains such an edge uv (neither vertex is a leaf
or a dominating vertex). Then let A = {u}, B = {v}, and C =V — {u,v}.
It is easily checked that this is a SINK EDGE-partition. O

Corollary 4 (a) SINK EDGE € D(G) if and only if G has a SINK EDGE-
partition of the form A = {u}, B = {v} and C =V — {u,v}.
(b) SINK EDGE can be decided in O(m) time, where m = |E|.

4.2 SOURCE

Theorem 5 Let G = (V,E) be a graph of order n. SOURCE € D(G) if
and only if n > 4 and there exist two vertices u,v € V such that (i) u and
v are not adjacent, and (i) 1 < deg(u),deg(v) < n -—3.

Proof. Assume that SOURCE € D(G). That is, there is a partition of
the vertices of G into three sets {A, B,C} such that A= B and A = C,
but neither sets B nor C dominate any other set. It follows that there
exists nonadjacent vertices u € B and v € C. Since A = B, we know that
deg(u) > 1; similarly deg(v) > 1. Also, there must be at least one vertex
w € A that is not adjacent to u € B, since B # A. Thus, deg(u) < n — 3.
Similarly, deg(v) < n —3.

Conversely, assume that n > 4 and there exist two vertices u,v € V
such that « and v are not adjacent and 1 < deg(u),deg(v) < n — 3. Then
the partition {V — {u,v}, {u}, {v}} is a SOURCE-partition. O
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Corollary 6 (a) SOURCE € D(G) if and only if G has a SOURCE-
partition of the form A =V — {u,v}, B = {u} and C = {v}, where u
is not adjacent to v.

(b) SOURCE € P.

4.3 SOURCE EDGE

Recall that if {4, B,C} is a SOURCE EDGE-partition of a graph G =
(V, E), then A and B dominate each other, A and B both dominate C, but
C dominates neither A nor B. The decision problem SOURCE EDGE has
a polynomial solution.

Lemma 7 If G = (V,E) is a graph for which SOURCE EDGE € D(G),
then G has a SOURCE EDGE-partition {A, B,C} in which |C| = 1.

Proof. Let {A, B,C} be a SOURCE EDGE-partition of a graph G and
let = be any vertex in the set C. Then it is easy to see that the partition
{AU (C - {z}), B, {z}) is also a SOURCE EDGE-partition of G. O

Theorem 8 For any connected graph G = (V, E) of order n, it holds that
SOURCE EDGE € D(G) if and only if the following two conditions hold:

1) G has no isolated vertices.

2) There ezists a vertez x € V, such that

(i) 1 < deg(z) <n -2,

(ii) N(z) contains no vertices of degree 1 (z is not adjacent to a leaf),
(i6i) IN(V = Nla])| 2 2,

(i) IN(N(z))| 2 3.

Proof. (a) Assume SOURCE EDGE € D(G). By the above lemma, we
know that G has a SOURCE EDGE-partition {4, B,C} in which |C| = 1.
Let C = {z}.

Clearly, G cannot have any isolated vertices, since every vertex must be
dominated by at least one vertex from a set other than its own. It remains
to show condition (2):

(i) Since both sets A and B dominate z, we know that deg(z) > 1. And
since C dominates neither A nor B, there must be a vertex in A that
z does not dominate and a vertex in B that x does not dominate.

Therefore, deg(z) < n — 2.
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(ii) If vertex = were adjacent to a leaf y, then y ¢ C since it could not be
dominated by either A or B, y ¢ A since it could not be dominated
by B, and y ¢ B since it could not be dominated by A.

(iii) Let S =V — N|z]. At least one vertex in A must be in S and at least
one vertex in B must be in S, otherwise C will dominate either 4 or
B. If IN(S)| =1 then S must be an independent set, every vertex of
which is a leaf and every such leaf is adjacent to the same vertex, say
y € N(z). Now if y € A, then it follows that S C B, and if y € B
then S C A, either of which contradicts the fact that S contains at
least one vertex in A and one vertex in B.

(iv) Let R = N(z). If |IN(R)| = 1, then every vertex in R must be a
leaf. This contradicts condition 2(ii). Thus, assume that |[N(R)| = 2.
In this case, every vertex in R has degree 2 and all vertices in R
are adjacent to the same two vertices: z and a vertex y € S. Since
x € C, we know that at least one neighbor of z is in A and at least
one neighbor of z is in B. But in this case vertex y cannot be in C,
else the vertices in R only have neighbors in C; y cannot be in A, else
there will be a vertex in R that is also in A and have no neighbor in
B; and y cannot be in B else there will be a vertex in R that is in B
having no neighbor in A. Thus, |[N(R)| > 3.

(b) Conversely, assume conditions 1) and 2) hold. Let R = N(z) and
S =V - N[z]. Note that the subgraph G’ = G[R U 5] has no isolated
vertices, since G has no isolated vertices and each vertex in R has degree at
least two. Then by Ore’s Theorem 1, the vertices of G’ can be partitioned
into two sets {A, B} such that A dominates B and B dominates A.

But in order to create a SOURCE EDGE-partition with C = {z}, we
must guarantee that both A and B have a vertex in S, so that C dominates
neither A nor B, and both A and B have a vertex in R, so that both 4
and B dominate C. We can do this in three steps, as follows.

Step 1. We find two special edges uv and wy in G’ = G[RU S]. There
are two cases.

Case 1. If neither R nor S is an independent set, then let uv be an
edge between two vertices in R and wy be an edge between two vertices
in S.

Case 2. If either R or S, or both, are independent sets, then let uv
and wy be two nonadjacent edges where u,w € R and v,y € S. Conditions
2(iii) and 2(iv) guarantee that these two edges exist in this case.

Step 2. Let G be the graph obtained from G’ by removing the edge uy
if it exists. Note that the graph G still does not have an isolated vertex.
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Step 3. Let A be a maximal independent set of G” containing {u,y},
and let B =V(G") - A.

By construction, v,w € B. Since A is an independent dominating set of
G", it is also a minimal dominating set, and therefore, by Ore’s Theorem,
B is also a dominating set of G”. Note that no matter how the two edges
uv and wy are chosen, R will have a vertex in A and a vertex in B, and S
will have a vertex in A and a vertex in B. O

Since conditions 1 and 2 can be verified to exist in O(n?) time, we have
the following corollary.

Corollary 9 SOURCE EDGEe P.

44 EMPTY

In this section we show that EMPTY is polynomial-time solvable, even if
the digraph has more vertices. Let EMPTY(k) denote the digraph having
k vertices and no arcs.

Theorem 10 EMPTY(k) € P.

Proof. We claim that graph G has an EMPTY(k)-partition if and only
if there exist (not necessarily distinct) vertices v;; for all 1 < i # j <k
such that:

(a) The sets B; = {v;j : j # i} for 1 < i < k are disjoint (though it can
happen that v;; = vyjr, for 7 # j').

(b) Every vertex v;; is nonadjacent to all of the set C; = {v;; : i #j }.

(c) For every other vertex w in V — | J; B;, there exists a value j,, such
that w is nonadjacent to all of Cj,,.

For, assume that there is an EMPTY(k)-partition {A;, Ag,..., Ax} of
graph G. Then, for all i # j, there is a vertex v;; € A; that is not adjacent
to any vertices in A;. It can be checked that these v;; have the properties
described above. (For property (c) let j,, be the color of w.)

Conversely, if we have vertices v;; satisfying the above conditions, then
give every v;; color i, and give every other vertex w color j,,. This is an
EMPTY/(k)-partition of the graph G.

A polynomial-time algorithm can therefore be constructed for deciding
if EMPTY (k) € D(G) as follows. Consider all n¥(¥=1) possibilities that
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arise by choosing for each i # j a (not necessarily distinct) vertex v;;. In
each case one can readily check conditions (a), (b), and (¢). Thus one can
determine whether the graph has such a partition. O

4.5 TRANSITIVE

In this section we show that TRANSITIVE is polynomial-time solvable,
even if the digraph has more vertices. Let TRANSITIVE(k) denote the
transitive complete digraph of order k.

Theorem 11 TRANSITIVE(k) € P.

Proof. Let {A;, A, ..., Ax} be a TRANSITIVE(k)-partition of graph
G, where A; is a source and Aj is a sink. Then we may assume that
|Ak] = 1. For, if Ax has more than one vertex, we can move all but one of
the vertices in Ax to A; and have another TRANSITIVE(k)-partition.

We can generalize this. Define vertices as follows: pick one vertex v* €
Apg. For i decreasing from k — 1 to 2, define a subset A C A; as follows:
for each vertex w € Ai,, U...U A}, there exists a vertex v, € A; that
dominates w. Furthermore, for each j > i, there exists a vertex azg €
A; that is not dominated by A;. Let A} be the set of all ¥}, and z} so
chosen. Note that the v;, and z} might not be distinct. It follows that
{V-UL, A4}, A, 4,..., AL} is a TRANSITIVE(k)-partition.

Therefore, a polynomial-time algorithm for TRANSITIVE(k) can be
constructed as follows. Consider all possibilities for {45,..., A}}, where
we color the vertices in A} with color <. All remaining vertices are colored
- 1. The colors 2 through k& have the desired property, by construction. So
this is a TRANSITIVE(k)-partition if and only if the set of vertices colored
1 has the desired property. This condition is easily checked.

Note that for fixed k, the size of A} is bounded. The bound B(m) for
|A%_,n| obeys the recurrence: B(m) < m + Ly emB(m'), with B(0) = 1.
This sequence is 1,2,5,11,23,.. ., the i* term z; of which is z; = 2z;_; +1
fori>1.0

4.6 ARC
Theorem 12 ARCe P.

Proof. Let {A,B,C} be an ARC-partition of a graph G = (V, E).
Then A dominates B, but A does not dominate C, B dominates neither A
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nor C, and C dominates neither A nor B. It follows that there exist vertices
vaB, VAC, VBC, UcA, and vcp, where vyxy is a vertex of set X that is not
dominated by any vertex in set Y. Let S = {vaB,vac,vBc,vca,vcB},
where it is possible that vxy = vxy-.

Define the following three sets:

|4 S - N('UCA),
V — 8§ — N(vap) — N(vcs), and
V — S — N(vac) — N(vsc).

Qi b st
[

Note that each set X is the set of vertices outside S that can be in X if
we want to preserve the non-domination conditions on S. Note also that

X2x-5.
Now define the following three sets:

= {vaB,vac}V A
= {v8a}U(B - (AU 0)), and
= {'UCA,'UCB} U (C A)

In other words, A’ contains every vertex that can be in A, and B’ contains
every vertex that must be in B. Since every vertex is in one of A, B, or
C, {A',B',C"} is a partition of V(G).

We claim that in fact {A/, B’,C’'} is an ARC-partition of G. Note that
the vertices of S retain their color. By construction, no vertex vxy has
a neighbor in Y’. So the non-domination condition is satisfied. All that
remains is to prove that A’ dominates B’. But note that A’ 2 A and
B’ C B. Since A dominates B, it follows that A’ dominates B’.

Now, given vertices vaB, v4c, YBG, Yca, and vcp, We cen easily con-
struct A’, B’ and C’. Note that A, B, and C depend only on the neigh-
borhoods of these vertices and not their colors. We can then check that
{4, B',C"} is an ARC-partition by verifying that {A’, B',C"} is a partition
(every vertex outside S is in AuBuU C), that the implied constraints within
S are satisfied, for example, there is no edge from v4p to vgc, and that A’
dominates B’.

Therefore, for an algorithm we can try every possible set of vertices S,
each having three to five vertices. If any of the resulting {A’,B’,C’'} is a
partition of V(G) that satisfies the requirements of an ARC-partition, then
ARC € D(G); otherwise ARC ¢ D(G). O
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5 NP-complete Triads

To date we have succeeded in showing that four triads have N'P-complete
decision problems. The first result of this type was already proved by Garey
and Johnson (cf. p. 190 of [1]) for the triad K.

51 Kj
Theorem 13 (Garey and Johnson [2]) K3 is N'P-complete.

In this case the vertices of the graph G must have a partition into three
mutually disjoint dominating sets. This is equivalent to saying that the
domatic number of G is at least three.

5.2 PATH
Theorem 14 PATH is N'P-complete.

Proof. We use a transformation from 3-COLORABILITY (cf. p. 191
of [1)).

3-COLORABILITY

INSTANCE: Graph G = (V, E).

QUESTION: Is G 3-colorable, i.e. does there exist a function
f:V = {1,2,3} such that f(u) # f(v) whenever u is adjacent
to v?

Given an input graph G, construct the graph G’ as follows: for each
edge e = uv € E, add three vertices x,y, z and five edges such that N(z) =
{u,v}, N(y) = {u,v,z}, and N(z) = {y}. This is illustrated in the left
figure of Figure 2. Note that the edge wv is retained in G’. Finally, add a
single disjoint copy of the path P; of order 3.

Claim: G is 3-colorable if and only if PATH € D(G).

(1) Assume that G is 3-colorable. Then for each edge uv, vertices u
and v receive different colors. Extend this to a PATH-partition of G’ by
(i) coloring every vertex y with color B, (ii) coloring every vertex x with
the color not used to color u or v, (iii) if either u or v is colored B, then
color z with the color not used to color u and v, and (iv) if neither « nor
v is colored B, then color z arbitrarily with either A or C. Finally, color
the central vertex of the P; with color B and the two leaves of the P; with
different colors A and C, arbitrarily.
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Figure 2: Gadgets for N'P-completeness proofs

Because of the coloring of the vertices of the Pj3, neither sets A nor C
dominate each other. On the other hand, every vertex in A and in C has a
neighbor in B, and every vertex in B has a neighbor in A and a neighbor
in C. Therefore, {A, B,C} is a PATH-partition of G'.

(2) Conversely, assume that {4, B,C} is a PATH-partition of G’. Sup-
pose that for some edge e = uv of G, vertices u and v have the same color.
If both u and v have color A, then there is a contradiction at vertex z; =
cannot be colored A since then it will not have a neighbor colored B, it
cannot be colored B since it will not have a neighbor colored C, and it can-
not be colored C since it will not have a neighbor colored B. Similarly, if
both u and v are colored C, then there is again a contradiction at vertex z.

If u and v are both colored B, then there is a contradiction at vertex y,
since to avoid a contradiction at z, it must be that z has color A or C and
y has color B. But then y, having color B, is missing a vertex of color A or
C in its neighborhood. Therefore, vertices u and v must receive different
colors, and we have a proper coloring of G. O

It is interesting to observe that for graphs having diam(G) < 2 the
decision problem PATH has easy solutions. Any graph having diam(G) =1
is a complete graph, for which PATH ¢ D(G). For graphs with diam(G) = 2
we have the following theorem.

Theorem 15 For any connected graph G = (V, E) having diam(G) = 2,
PATH € D(G).
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Proof. Let G = (V, E) be a connected graph having diem(G) = 2, and
let v € V be any vertex with ecc(v) = 2. Define the following partition

{A,B,C}:
C=V-Np), A=N[]-N(C), B=N(@w)nN(C).

For this partition it is easy to show that A= B, B= A, B=C,C = B,
C# A,and A# C. It follows that PATH € D(G). O

5.3 K3;-MINUS
Theorem 16 K3-MINUS is N'P-complete.

Proof. Recall that K3-MINUS is the triad having all arcs except one,
say from C to A. We again use a transformation from 3-COLORABILITY.
The proof is similar to the proof of Theorem 14 for PATH, except that the

construction is the following.

Given input graph G, construct the graph G’ as follows: For each edge
e = uwv € E, add four vertices z,y, z,w and eight edges such that N(z) =
{u,v}, N(y) = {u,v,z,w}, N(2) = {y}, and N(w) = {u,v,y}. Note that
the edge uv is retained in G'. This is illustrated in the middle figure of
Figure 2.

Claim: -G is 3-colorable if and only if K3-MINUS € D(G’).

Proof summary. If G is 3-colorable, then one can extend this 3-coloring
to a K3-MINUS-partition of G’. One gives z and w the color missing on
edge uwv, y color B, and z color A.

Conversely, if we have a K3-MINUS-partition {4, B,C} of G’, then it
must be a proper 3-coloring of G. For, if the colors of the two vertices
of edge e = uv are both A or both C, then z cannot be correctly colored
in the K3-MINUS-partition; and if the two vertices of e are both colored
B, then either vertex w or vertex y cannot be correctly colored in the
K3-MINUS-partition. O

5.4 TRANSITIVE EDGE
Theorem 17 TRANSITIVE EDGE is N'P-complete.

Proof. We use a modification of the above proofs for PATH and
K3-MINUS. Recall that TRANSITIVE EDGE is the triad with vertices
A, B and C, where A= B, B= A, A= C and C = B. We again use a
transformation from 3-COLORABILITY.
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Given an input graph G, construct the graph G’ as follows: for each edge
e = uwv € E, add a component F,, having eight vertices d,e, f, g, h,4,7,k,
and the edges ud, vd, ue, ve, ui, vi, uj, vj, jk, ed, fd, gd, and hg. As
before, the edge uv in G is retained in G’. This is illustrated in the right
figure of Figure 2.

Claim: G is 3-colorable if and only if TRANSITIVE EDGE € D(G').

(1) Assume that {A, B,C} is a proper 3-coloring of G. Then for each
edge uv, vertices u and v receive different colors. We extend this to a
TRANSITIVE EDGE-partition of G’ as follows:

(i) if edge uv is colored AB or BA, then give vertices f, g, and
j color A; give vertex d color B; and give vertices e, i, h and k
color C.

(ii) if edge uv is colored AC or CA, then give vertices f, g, and
k color A; give vertices d, e, i and j color B; and give vertex h
color C.

(iii) if edge wv is colored BC or CB, then give vertices e, f, g,
i and j color A; give vertex d color B; and give vertices h and
k color C.

In each of the edge components F,,, constructed, vertex f is colored A,
and its only neighbor d is colored B. Therefore, set C does not dominate A.
Each vertex h is colored C, and has only one neighbor g, which is colored
A. Therefore set B does not dominate C. On the other hand, every vertex
in B and every vertex in C has a neighbor in A, every vertex in A has a
neighbor in B, and every vertex in B has a neighbor in C. Therefore, G’
has a TRANSITIVE EDGE-partition.

(2) Assume that G’ has a TRANSITIVE EDGE-partition {4, B, C}.
We will show that {V N A,V N B,V NC} is a proper 3-coloring of the
vertices of G. This requires several observations about a TRANSITIVE
EDGE-partition of G’:

1. No leaf in G’ can be colored B, because vertices colored B need both
a neighbor in A and a neighbor in C. Further, if a leaf is colored A,
then its neighbor has to have color B; and if a leaf is colored C, then
its neighbor has to have color A. It follows that a vertex cannot be
colored C if it is adjacent to a leaf.

2. Claim: the vertices d, f, g and h in each edge component F,, must
be colored so that d has color B, f and g have color A, and A has

color C.
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Proof of Claim : Vertex d is adjacent to a vertex of degree 1, so its
color cannot be C. Vertex g cannot be colored B, since it would
have no neighbor of color C. Vertex g cannot be colored C since it is
adjacent to a vertex of degree 1. So vertex g is colored A, and vertex
h is colored C. Vertex g needs a neighbor colored B, forcing vertex d
to be colored B. Therefore vertex f will be colored A. Note that in
coloring of vertices u,v, and e, at least one of these must be colored
C, so that vertex d is dominated by C.

Now, suppose that the vertices on some edge e = wv in G have the same
color in a TRANSITIVE EDGE-partition {A, B,C} of G'. In this case, we
can show there is a contradiction in the component F,, that was added to

G’ for edge uv.

(i) If both « and v have color C, then there is a contradiction
at vertex i: if ¢ is colored A, it must be adjacent to a vertex
colored B; if i is colored B, it must be adjacent to a vertex in
both A and C; and if ¢ is colored C, it must be adjacent to a
vertex colored A.

(i) If both u and v are colored B, then there is a contradiction
at vertex e: vertex d needs a neighbor colored C, which must
then be vertex e, but then there will be no vertex of color A to
dominate vertex e.

(iii) If both » and v have color A, then there is a contradiction
at vertex j: since vertex j is adjacent to a vertex of degree 1,
it cannot be colored C, and if it is colored A, it cannot have
a neighbor colored B, and if it is colored B, it cannot have a
neighbor colored C.

Therefore, {VN A,V NB,VNC}is a proper 3-coloring of G. O

6 Partial Results

In this section we show that the two problems EDGE IN and EDGE OUT
are trivial if the graph has diameter at least 3.

6.1 EDGE IN

Recall that EDGE IN € D(G) if and only if the vertices of G can be par-
titioned into three sets {A, B, C} such that A dominates B, B dominates
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A, but neither A nor C dominate each other, and C dominates B, but B
does not dominate C.

Theorem 18 For any connected graph G = (V, E), if diam(G) > 3 then
EDGE IN € D(G).

Proof. Let G = (V, E) be a connected graph having diam(G) > 3, and
let u € V be any vertex having maximum eccentricity ecc(v) = diam(G) >
3. Define the vertex partition {A, B,C} where A = {v}, B = N(v) and
C=V - N[

Now define B(C) = N(C) N B to be the set of vertices in B = N(v)
that are adjacent to at least one vertex in V — N[v]. Consider then the
vertices B(N[v]) = B — B(C) in B that are not adjacent to any vertices in
C =V — N[v). Notice that if a vertex w € B(N[v]) is not adjacent to any
vertex in B(C), then ecc(w) = ecc(v)+1, contradicting our assumption that
v has maximum eccentricity. Thus, every vertex in B(N|[v]) is adjacent to
at least one vertex in B(C). Therefore, define the following new partition
of V. Let A’ = {v} UB(N[v]), B'=B(C) and C' = C.

For this partition we can readily show that A’ = B’, B’ => A", A’ # C,
C's A", B'# C', and C’' = B'. It follows that EDGE IN € D(G). O

It is trivial that EDGE IN ¢ D(QG) if G has diameter one. We have not

yet resolved the complexity of the decision problem EDGE IN € D(G) for
graphs G having diam(G) = 2.

6.2 EDGE OUT

Recall that EDGE OUT € D(G) if and only if the vertices of G can be
partitioned into three sets { A, B, C} such that A dominates B, B dominates
A, but neither A nor C dominate each other, and B dominates C, but C

does not dominate B.

Theorem 19 For any connected graph G = (V, E), if diam(G) = 3 then
EDGE OUT € D(G).

Proof. Let G = (V, E) be a connected graph having diam(G) > 3 and
let u € V be any vertex having maximum eccentricity ecc(u) = diam(G) >
3. Define the vertex partition {A, B, C} where '

C = {u}.

B={v|d(u,v) =1mod2}.
A={w|0<d(u,w)=0mod2}.
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Now define C’ to be the set of vertices in N(u) that are not adjacent
to any vertices in V — N[v]. Notice that if a vertex w € C’ is not adjacent
to any vertex in N(v) — C’, then ecc(w) = ece(u) + 1, contradicting our
assumption that u has maximum eccentricity. Thus, every vertex in C’ is
adjacent to at least one vertex in (N(u) — C’) C B. Therefore, define the
following new partition of V. Let C” = {u}UC’, B” = B—C’ and A" = A.

For this partition we can readily show the following: B” = A", A" =
B", A" # C", C" # A", B" = C”, and C" # B". It follows that
EDGE OUT € D(G). O

It is trivial that EDGE IN ¢ D(G) if G has diameter one. We have not
yet resolved the complexity of the decision problem EDGE OUT € D(G)
for graphs G having diam(G) = 2.

7 Summary and Open Problems

1. It is likely that the problem of deciding if a graph G has a TRIAD-
partition {A,B,C} where sets A, B, and C are all independent is
NP-complete, since this requires a 3-coloring of the graph G. But
two similar problems might not be NP-complete: (i) does a given
graph G have a TRIAD-partition in which one (or at least one) of
the three sets A, B and C is independent? (ii) does a given graph G
have a TRIAD-partition in which two (or at most two) of the three
sets A, B and C are independent?

2. Can any more of the results above for diads and triads be modified to
provide results for quatrads, i.e. domination digraphs of order n = 4?

3. If the diameter of a graph G is at least 3, does a TRIAD decision prob-
lem become simpler? Why are EDGE IN and EDGE OUT difficult

for diameter 2?7

4. We have not yet determined the complexity of the six triads EDGE,
DIPATH, CYCLIC TRIPLE, SINK, EDGE IN, and EDGE OUT.

5. Do some of these problems become easier for specific families of graphs?
For example, computing the domatic number is easier for some fami-
lies (see [3, 6]).
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