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Abstract

In [1], we showed that for v = 1 or 3 (mod 6), there is
an equitable k-edge coloring of K, that does not admit any
polychromatic STS(v), when k = 2, 3, and v — 2. In this
paper, we extend the results to all feasible values of k, where

2<k<v-2

1 Introduction

An edge coloring of a graph G is an assignment of colors to the edges
of G. A k-edge coloring of G is an edge coloring of G in which &
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distinct colors are used, ¢, ¢z, ,ck say. We let E(c;) denote the
set of edges that are assigned color ¢;, for ¢ = 1,2,...,k. Also, let
d(v) denote the degree of a vertex v.

A Steiner triple system of order v, denoted ST'S(v), is an ordered
pair (V,T), where V is a v-set of symbols and T is a set of 3-element
subsets of V' called triples such that any pair of symbols in V' occurs
together in exactly one triple. It is known that a Steiner triple system
(ST'S) of order v exists if and only if v = 1 or 3 (mod 6); see [12].

Let G and H be graphs. An H-decomposition of G is a set
H = {H1, Hy,...,Hp} such that H; is isomorphic to H for 1 <i<p
and H partitions the edge set of G. A Kj3-decomposition of K, is
equivalent to an ST'S(v), and we will use the terms interchangeably.
Similarly, we will often refer to K3 as a triple.

We color the triple {z,y,2} with the color triple < ¢;,¢j,cx >
by assigning the colors ¢;, ¢; and ¢ to the edges {z,y}, {y,2} and
{z, z} respectively. Note that when no confusion is likely to arise, we
denote the edge {z,y} by zy. If ¢, j, k are distinct, then we say that
{z,y, 2} is polychromatic. An STS(v) or K3-decomposition of some
graph G is said to be polychromatic if every triple in the ST'S(v) or
decomposition is polychromatic.

Consider the graphs H and G, with an edge coloring of G. The
graph H is said to be a polychromatic subgraph of G, if G con-
tains a subgraph isomorphic to H, all of whose edges are assigned
distinct colors. Most of the effort regarding edge coloring problems
has been devoted to determining the least number of colors used to
color E(K,) that forces a specified polychromatic subgraph to oc-
cur. Those problems are called Anti-Ramsey problems. For more
details about Anti-Ramsey problems and polychromatic subgraphs,
the reader is referred to [4, 5, 10, 13].

In [2], Bate studied complete graphs without polychromatic C,
for n = 3 and n = 4. A good survey about monochromatic and
polychromatic subgraphs in edge colored graphs can be found in
[11).

For each v € V(G) let ny(c;) denote the number of edges in E(G)
of color c; incident with vertex v, fori = 1,2,...,k. A k-edge coloring
of G is said to be equitable if |n,(c;) — ny(c;)| < 1 for all v € V(G)
and 1 < i & j < k. That is, the number of edges of each color is
as close as possible at any vertex of the graph G. If there exists an



equitable k-edge coloring of G, then G is said to be equitably k-edge
colorable.

Hilton and de Werra [9] found a sufficient condition for a simple
graph to admit an equitable edge coloring:

Theorem 1.1. [9] Let G be a simple graph and let k > 2. Ifk t d(v)
(Vv € V(G)) then G has an equitable k-edge coloring.

Specialized colorings of cycle systems (C3 and Cy), in which some
.condition on the coloring is satisfied, have received recent attention.
We refer the interested reader to (3, 6, 7, 8.

In [1] we asked two questions regarding the relationship between
an equitable k-edge coloring of the complete graph, K,, and the
decomposition of K, into triangles (that is, the construction of an
STS(v)). The first question was: does every ST S(v) admit a poly-
chromatic k-edge coloring which is also an equitable k-edge coloring
of the complete graph of order v, K,,? We showed that the answer is
no when k = 3.

The second question was: For v = 1 or 3 (mod 6), does every
equitable k-edge coloring of K, admit a polychromatic ST'S(v)? In
[1] we showed that the answer to this question is also no for k& = 2,
3, and v — 2. We also conjectured that the answer would be no for
the spectrum 2 <k <v-—2.

In this paper, we show that our conjecture is true. That is, we
prove that for 2 < k < v—2 and v =1 or 3 (mod 6), there exists an
equitable k-edge coloring of K, that does not admit any polychro-
matic ST.S(v). This is done by finding an equitable k-edge coloring
for which there exists an edge that appears in no polychromatic tri-
angle. Note that if k¥ > v — 1 then the edge coloring is proper and all
the triangles are polychromatic.

A latin square of order n is an » X n array on n symbols, say
1,2,-.-,mn, in which every symbol occurs exactly once in each row
and column of the array. A latin square is said to be reduced if its
first row and first column have the symbols 1,2,--- ,n in that order.
If the condition that each symbol occurs exactly once in each row
and column is replaced by the condition that it appears the same
number of times in each row and column, then such squares are
called frequency squares. Similarly, if the condition is modified such



that each symbol occurs at least once in each row and column, then
the array is called a generalized frequency square.

Let L be a latin square of odd order n on the symbols 1,2, --- ,n.
A k-fized-cell-transversal is a set of n cells with the property that one
cell lies in each row, one in each column, and all the cells contain the
same symbol k. For example, the cells (1, 6), (2,5), (3,4), (4,3), (5,2),
(6,1) and (7,7) make a 7-fixed-cell-transversal in the following latin
square: ’

N| O = | J] W >
DI oy =] ~3] W
WD OY =] ] -3
3| W] o] o] o =] >

s ] wl ooy =
=R 3] w] oo or
Uy = B 3] W] DN

Note that the above latin square is also idempotent and commu-
tative. It is known that idempotent commutative latin squares exists
for all odd orders.

2 The Lemmas

Lemmas 2.1 and 2.2 consider equitable k-edge colorings of the com-
plete graph for odd and even k, respectively.

Lemma 2.1. Let t, k and m be integers such that t,k > 1, k is
odd, 0 <m < k-1, and if m = k—1 thent is odd. Then there
ezists an equitable k-edge coloring of Kik+m+2 for which there ezist
two vertices = and y such that for each z € V(Kkim42) \ {2,y} the
edges £z and yz have the same color.

Proof. Let t, k and m be as specified by the conditions of the lemma,
and let the colors be ¢y, ¢y, . . ., cx. We arrange the vertices of Ky m+2
into ¢ layers of k vertices each, one layer of m vertices, and the two ex-
tra vertices  and y. That is, let V(Kiktm+2) = U§=1{1,~, 2y ..., ki}U
{141, 2641, -, Mo} U {z, 3}

Let (Q,) be a commutative idempotent quasigroup of order k.
Since k is odd, we know that a quasigroup with such properties



exists. We use this to define an initial coloring as follows: for any
distinct ir,js € V(Kik4m+2), color the edge ij, with c;.j; for each
ir € V(Ktk+m+2), color the edges i,z and i,y with ¢;; and finally,
color the edge zy with ¢p41.

Suppose that ¢ is odd. Foreachi € {1,2,...,m}, change the color
of edges i1i9,%3%4,. .., %ttt from cii = ¢; to Ci.(m+1)- The resultant
coloring is equitable. This leaves the case where ¢ is even, and hence
by assumption m < k — 2. For each i € {1,2,...,m}, change the
color of edges 4142, 4344, . . . , 412t from ¢; to ¢;.(;m41), and change the
color of edge i:i:4+1 from ¢; to ¢;.(m42)- Again, this gives an equitable

coloring.
a

Lemma 2.2. Let k and n be integers such that k is even, n is odd,
and 4 < k < n—1. Suppose also that n # k+ 1 (mod 2k). Then
there erists an equitable k-edge coloring of K, for which there ezist
two vertices £ and y such that for each z € V(K,) \ {z,y} the edges
zz and yz have the same color.

Proof. Let the colors be cg,c1,...,Ck-1, let m = n — 2, and let
V(K,) = {0,1,2,...,m — 1} U {z,y}. We construct the coloring
by using an m X m commutative generalized frequency square on
the symbols {0, 1,2,...,m — 1}, with the property that each symbol
occurs either | ] or [Z] times in each row, each column and on the
main diagonal, and in addition the symbol in cell (4,4) occurs ||
times in row 7 and column ¢. Letting ¢-j = j -4 denote the symbol in
cell (4, j) of the generalized frequency square, the required coloring
is obtained by coloring, for ¢,j € {0,1,...,m — 1}, edge ij with ¢;.;,
edges zi and yi with ¢;.;, and the edge zy with ¢;, where ! is any sym-
bol which occurs | 2] times on the main diagonal of the generalized
frequency square. Thus the problem is reduced to constructing such
a square.

Let a,b,r be non-negative integers satisfying m = rk + a and
k = a +b. Note that a and b are odd. First suppose that n # 1
(mod k). Construct an initial square S by letting ¢ - j = (f(2) +
f(7) mod m) mod k, where

1/2, i even,

o) = { (m+1)/2, %odd.



Note that 7-¢ = ¢ mod k, and since n # 1 (mod k), b > 3. Each of the
symbols ¢p, €1, ..., ¢q—1 and ¢q, Ca+1, - - - , Ck—1 OCCUr respectively r+1
and r times in every row and column and on the main diagonal of S.
This square has the required properties, with the exception that if
i-1€{0,1,...,a—1}, then ¢-i occurs r+1 times in row ¢ and column
i. We proceed by changing selected off-diagonal cells to reduce this
number to r, while preserving the other required properties of the
square.

We begin with the case where r is odd. Let € {0,1,...,a — 1},
je{0,1,...,(r=1)/2}, p=i+kj,q=1+k(j+(r+1)/2). Note that
p-(p+b) = (p+b)-p = p-p=1i,and ¢-(g—b) = (¢g—b)-¢ = g-¢ = %, but
(p+b)-(p+b) # i and (g—b)-(g—b) # i. Replace the symbol 7 in cells
(p,p + b) and (p + b,p) with one of the symbols a,a +1,...,k—1,
ensuring that the symbol used is not (p + b) - (p + b). Similarly
replace the symbol 7 in cells (g, g — b) and (g — b, g) with one of the
symbols a,a + 1,...,k — 1, ensuring that the symbol used is not
(g = b) - (g — b). We make these substitutions in order of increasing
p then g, and further ensure that the new color chosen for a cell has
not already been added to that row or column; this is possible since
b > 3 (because of the order in which we make the substitutions, for
each cell in turn there may have already been a substitution in the
same row, or in the same column, but not both). Following these
substitutions, S has the required properties, except in one case: if
substitutions are made in two cells in the same row (column) which
had the same original color, then this color will not appear sufficiently
often in that row (column) after the substitution. This occurs if and
only if k = 2b. A separate construction is given below for this case.

Now consider the case where r is even. Let i € {0,1,...,a — 1},
je{0,1,...,7/2 -1}, p = i + kj, ¢ = i + k(r — j). Note that
pp=gq-g=p-q=gq-p=1i. Incells (p,q) and (g, p), replace symbol
i with a. Finally, consider i € {0,1,...,a—1} and p = kr/2+1. Note
that p-p = (p+a)-p = p-(p+a) =i. Incells (p,p+a) and (p+a,p),
replace the symbol ¢ with a+1, or with a+2if (p+a):(p+a) = a+1.

We are left with two special cases, for which we use different
constructions to obtain a m x m commutative generalized frequency
square with the required properties. First, let 7 be odd and k& = 2b
(that is, a = b = k/2). Note that m = rk +a = (2r + 1)a. Let
A be an a x a idempotent commutative latin square on the symbols
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{0,1,...,a — 1}. Let B be the square formed by replacing the main
diagonal of A with the symbols {a,a+1,...,m—1} (that is, adding a
to each number on the diagonal of A). Let C be an a x a idempotent
commutative latin square on the symbols {a,a +1,...,m — 1}. Let
D be the square formed by replacing the main diagonal of C with
the symbols {0,1,...,a — 1}. Let « be a function which shifts the
bottom row of a latin square to the top; that is, if X is a latin square,
cell (4,7) of y(X) contains the symbol in cell (i — 1, j) of X, taking
1 — 1 modulo the order of X. Form a generalized frequency square
by taking a (2r + 1) x (2r + 1) array with rows and columns labeled
{0,1,...,2r}, and placing a latin square of order a in each position.
Consider position (z,5), 0 <4,j < 2r. If i = j and < is even, place a
copy of B in this position; otherwise, if ¢ 4 j is even place a copy of
A in this position. If j is even and 7 = j + 1, place a copy of v(D)
in this position. If ¢ is even and j = i + 1, place a copy of y(D)T
in this position. If (3,7) = (2r — 1,2r), place a copy of ¥2(D) in
this position. If (3,7) = (2r,2r — 1), place a copy of ¥2(D)T in this
position. Otherwise, if i+ j is odd, place a copy of C in this position.
The result is a m x m generalized frequency square with the required
properties.

Finally, consider the special case n = 1 (mod k). By assumption,
n# k+1 (mod 2k). Hence m = 2sa + 2s — 1, where a = k — 1 and
s is a positive integer. Let A be an a x a idempotent commutative
latin square on the symbols {0,1,...,a — 1}, which contains at least
one transversal T' which is disjoint from the main diagonal. Let B
be the array formed by replacing the main diagonal entries in A with
the symbol a. Let C be the array formed from B by replacing all the
entries in T by a. Let Ry and C) be a1l x a array and a a x 1 array
respectively, formed by placing the entry in cell (%, j) of T in position
j of R and position i of C;. Let R be the 1 x 2sa array formed by
the concatenation of s copies of R; followed by s copies of CT, and
let C = RT. Let R be a 1 x 2sa array with ¢ mod a in position i,
and let C' = R'T. Form a 2sa x 2sa generalized frequency square S’
by taking a 2s x 2s array in which each cell is a copy of A, B, or C.
Consider position (z,5), 0 <, < 25— 1. If ¢ = j, place a copy of
A in this position. If ¢ + j = 2s — 1, then if 7 > j place a copy of C
in this position, while if ¢ < j place a copy of CT in this position.
Otherwise place a copy of B in position (¢, j). We now extend S’ to
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an m x m generalized frequency square S, by placing 2s — 2 copies of
R’ and one copy of R below S’, and 2s — 2 copies of C’ and one copy
of C to the right of S, and then completing S by placing symbol a
in (¢,7) for every i,j € {2sa,2sa + 1,...,m — 1}. This square has
the required properties. O

3 The main result

We are ready now to present the main result:

Theorem 8.1. Letn=1,3 (mod6),n 27 and2<k<n—-2. If
k is even and n = k + 1 (mod 2k), then there is no equitable k-edge
coloring of K,. Otherwise there ezists an equitable k-edge coloring of
K, that contains an edge that is not in any polychromatic triangle.

Proof. Suppose that k is even, n =k + 1 (mod 2k), and there exists
an equitable k-edge coloring of K,. Then n = pk + 1, p odd, and
each vertex is incident with p edges of each color. This implies that
there are np/2 edges of each color in total, which is not possible since
n and p are odd. Henceforth we assume that if k iseven, n £ k+ 1
(mod 2k).

For odd k, we write n = tk + m + 2, for some integer ¢ and
0 < m < k—1. Note that since n is odd, if m = k — 1 then ¢ is
odd. Apply Lemma 2.1 to get the required equitable k-edge coloring
of K, that contains an edge (zy) which is not in any polychromatic
triangle.

If k is even, k > 4, then Lemma 2.2 gives the required k-equitable
edge coloring of K, that contains an edge (zy) which is not in any
polychromatic triangle. O
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