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Abstract

Let L(m,n) be the largest integer such that, if each symbol in
an m X n rectangle occurs at most L(m,n) times, then the array
must have a transversal. We improve the lower bound to L(m,n) >
[mn=m+D-1| for m > 1. Then we show that sporadically L(m, n) <

m=1
ma=l| in the range m < n < m®? — 3m + 3. Define no(m) to be
the smallest integer z such that if n > z then L(m,n) = |22,
We improve no(m) from O(m?) to O(m?**). Finally, we determine

L(4,n) for all n.

1 Introduction

For positive integers m and n, where 2 < m < n, an m xn rectangle consists
of mn cells arranged in m rows and n columns in which each cell contains
one symbol from some set, usually the integers from 1 to s. Let L(m,n) be
the largest integer such that if each symbol in an m x n rectangle occurs at
most L(m,n) times, then the array must have a transversal. Equivalently,
L(m,n)+1 is the smallest integer such that there exists an m x n rectangle
which has no transversal and the symbol that occurs most in the rectangle
occurs L(m,n) + 1 times. A section is a subset of the rectangle with one
cell from each row and at most one cell from each column. A transversal
is a section in which all the symbols are distinct. A partial transversal is a
subset of the rectangle with at most one cell from each row and column in
which the symbols are all distinct.

Stein and Szabé [4] gave the following prominent conjecture.
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Conjecture 1 L(n—-1,n)=n-1

If the above conjecture were true then this old conjecture by Brualdi as
cited by Dénes and Keedwell [3] about latin squares would also be true.

Conjecture 2 In every latin square of order n there is a partial latin
transversal of length n — 1.

See Stein and Szabé [4] for more background and examples.

Clearly, L(m + 1,n) < L(m,n) < L(m,n + 1). We often say that an
array has mazimum frequency as a short hand for the symbols in the array
have mazimum frequency. We now give a short history on this problem.

In Alon [2] the following is proved using the Lovész Local Lemma.

Theorem 1.1 If no symbol appears in more than (n — 1)/(4e) cells of an
n X n array, then there is a transversal.

It is straightforward to generalize this to the following theorem. For a
proof, see [5).

Theorem 1.2 If no symbol appears in more than 'ﬂ%ﬂ cells of an
m x n array, A, then there is a transversal in A.

Stein and Szabd (4] proved the following upper bound.

Theorem 1.3 L(m,n) < mn/(m —1).

We define B(m,n) to be | 2251 and define ng(m) to be the smallest

m

integer, z, such that if n > z then L(m,n) = B(m,n). Akbari et al. [1]
proved the following theorem.

Theorem 1.4 For m > 2, ng(m) < 2m3 — 6m? + 6m — 1.

Stein and Szabd [4] proved the following two theorems.
Theorem 1.5 Ifn < 2m — 2, then L(m,n) <n—1.
Theorem 1.6 L(m,n) >n-m+1.

In the next section, we improve the lower bound for L(m,n) and prove
a better bound for no(m). Finally, we determine ng(4).
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2 Results

Theorem 1.1 gives L{n,n) > 2 for n > 23 and L(n,n) > 3 for n > 34. We
improve this with Theorem 2.1 which presents the best results known for

square arrays.
Theorem 2.1 L(n,n) > 2 for alln > 3. L(n,n) > 3 forn=4,5,6,7,8.

Proof In a square of order n, there are n! sections. Let the maximum
frequency in an m x n array be 2. There are essentially only 2 different
ways a symbol with frequency 2 can appear in a square array. If we want
to maximize the number of sections that contain 2 of the same symbol,
then the symbol should occur exactly 2 times in cells that occupy distinct
rows and distinct columns. Such a symbol will occur in (n — 2)! sections
which can not be transversals. Since there are at most |n2/2] symbols
of frequency 2, there are at most (|n%/2))(n — 2)! sections that are not
transversals. If n! > (|n?/2])(n — 2)! i.e. n > 3, then there is a section
leftover that is a transversal.

Let us now consider an array whose symbols have maximum frequency
3. There are essentially 4 different ways a symbol with frequency 3 can
appear in the array. If we want to maximize the number of sections that
contain 2 or 3 of the same symbol, then the symbol should occur exactly
3 times in cells that occupy distinct rows and distinct columns. A pair of
that symbol will occur in (n — 2)! sections which can not be transversals.
Of those (n —2)! sections (n —3)! will be common to all 3 pairs of the trio of
symbols. So there will be 3((n—2)! = (n—3)) +(n—3)! = (n—3)!(3n - 8)
distinct sections that will not be transversals. Since there are at most
|n2/3] symbols of frequency 3, there are at most (|n2/3))(n — 3)!(3n — 8)
sections that are not transversals. If n! > ({n2?/3])(n — 3)!(3n — 8) i.e.
n(n—1)(n-2) > (3n —8)([n2/3]), then there is a section leftover that is a
transversal. Note that a symbol of frequency 1 and a symbol of frequency 3
can be replaced by 2 symbols of frequency 2 but this does not increase the
number of sections that can not be transversals. If n = 4, there is another
arrangement of 3 identical symbols in a 4 x 4 array that causes 4 sections
not to be transversals but since the number of sections affected is the same
as before, the argument does not change. This proves the second part of
the theorem except for n = 6 or n = 8 where the inequality becomes an
equality.

When n = 6, n! = (|n?/3})(n - 3)!(3n — 8) and all symbols must occur
exactly 3 times in three different rows and three different columns. Then
every section contains 5 symbols, 4 symbols that are there exactly once and
one symbol that occurs exactly twice. Without loss of generality, suppose

417



symbol 1 occurs in cells (1,1), (2,2) and (3, 3). Let 2 be in cell (4,4) of the
array. Then symbol 2 can not occur again in row 4 or column 4. Further,
symbol 2 can not occur in the bottom right 2 x2 of the array or there will
be a section containing two 2’s and three 1’s which is a contradiction. So
the symbol in (4,4) can not occur again in the bottom right 3 x 3 of the
array. This is true for any symbol in the bottom right 3 x 3 array. So all
symbols in the bottom right 3 x 3 must be distinct. So if (4,4) contains
the symbol 2 and symbol 2 can not again be in row 4 or in column 4 or
in the bottom right 3 x 3 corner of the array, then where are the other
2's? If they are in the top right 3 x 2 corner of the array then there is a
section containing two 2’s and two 1’s which is a contradiction. Similarly,
the symbol 2 can not occur in the bottom left 2 x 3 corner. So the symbol
2 must occur twice more in the top left 3 x 3 corner. This is true for all
nine distinct symbols that are in the bottom right 3 x 3 corner. This puts
18 symbols in the top left 3 x 3 corner. This is a contradiction. The case
for n = 8 is similar. O

Corollary 2.1.1 L(4,4) =3 and L(5,5) = 3.

Proof Apply Theorem 2.1 and Theorem 1.5 with n = 4 to get the first re-
sult. Theorem 2.1 implies that L(5,5) > 3 and note that the 5 x 5 example
from [4] implies that L(5,5) < 3. 0

The key tool that Stein [4] and Akbari et al. [1] used to get their results
was establishing the existence of near transversals. We call the m — 1
positions in m — 1 distinct rows and m — 1 distinct columns containing
m - 1 distinct symbols, say z;,%2,...,Zm—1 in an m X n array a near
transversal. Since relabelling rows and/or columns and/or symbols does
not affect the existence or non-existence of transversals, we will show that
the near transversals occur in columns 1 to 2(m—2) and contain the symbols
1,2,...,(m — 1). In fact, the near transversals are actually in some set of
2(m — 1) columns scattered somewhere in A with symbols from some set of
cardinality m — 1. With this understanding we proceed.

Exploiting these near transversals in an array allows us to extend The-
orem 1.6 to the following theorem. The proof uses the ideas in Akbari et

al. [1] extensively.
Theorem 2.2 L(m,n) > 22| —m, m > 1.

m-1

Proof The proof will be by induction on the number of rows in the array.
The hypothesis is true for m = 2 and m = 3. We will assume that L(m —
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Figure 1:

1 n) > Lﬁl‘ﬂ"‘_’”‘*zﬂj and prove that L(m n) > LMJ -
"‘"“‘IJ — m. Consider an m x n array, A, with maximum frequency

[ML—J We will assume that there is no transversal in A and that
will lead to a contradiction.

Consider the first m — 1 rows of the array. By mathematical induction
we know that there is a transversal in these m — 1 rows. Without loss of
generality, we have A(1,1) = 1,4(2,2) =2,...,A(m-1,m-1)=m -1,
These cells form a near transversal in A which we call ¢'. If A(m,m) is ad-
joined with its symbol to t', we get a section, say t in A. If ¢ is a transversal,
we get a contradiction and we are done. So t is not a transversal and so the
symbol in A(m,m) must appear at least twice in t. Without loss of gener-
ality, let this symbol be 1. Because A(1,1), A(2,2),...,A(m-1,m—1) is
a near transversal, S = {A(m,j), for j > m} must contain only elements
from 1,2,...,m — 1 or otherwise we get the contradiction that there exists
a transversal. Similarly, because the cells A(2,2), A(3,3),...,A(m,m) is
also a near transversal, say t", A(1,j), for j > m must also contain only
elements from 1,2,...,m — 1. The situation is as shown in Figure 1. Let x
represent a symbol that isa 1,2, ... or (m - 1).

There are 2(n — m + 1) symbols in the array of Figure 1 that are 1’s or
z’s. But the symbol 1 can only appear with frequency [ﬂ(""m—"fll)—'—l-J which
is the maximum frequency. Then, since 2(n ~m +1) > [ﬂ"'m—":*'ll)'—lj , the
z’s can not all be 1’s. So without loss of generality, let A(1,m + 1) contain
a 2. Now the positions A(1,m + 1), A(3,3), A(4,4),...,A(m,m) contain
distinct symbols and form a near transversal, say ¢"’. For the same reasons
as before, there must be z’s in the range 1 to m — 1 in the second row from
columns m+1 ton. So there are at least 3(n—m+1) symbols that are 1, 2 or
z. But symbols 1 and 2 can appear at most 2 times, the maximum frequency
which is 2|_ﬂ“—:n"'_—"1"1);1_|. Then, since 3(n —m +1) > 2| Ra=mt)=1) o
all the z’s can be 1's or 2’s. So there is a symbol, larger than 1 or 2, say 3,
that is in rows 1, 2 or m and in the columns 1,2, or m + 2 of A. But there
are several non-isomorphic possibilities of where this 3 could be and also
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we don’t know if there is a near transversal that will force more z’s into A.
So we need to show that these near transversals exist very carefully.

We are going to prove that there are m — 1 near transversals, 77 =
t". Ty =", T3,...,Tm—1 each consisting of m — 1 cells, such that for every
1 < i <m — 1, the conditions in the following table hold:

Table 1

1: A6,i) =1.

2: Each row, except row i, has a cell in T;.

3: For every j, i < j < m, cell (4,7) is included in T;

4: The symbols in T; are 1,2,...,m — 1.

5: The cells in T lie in the first m + ¢ — 1 columns. Clearly, T and T3
satisfy Conditions 1-5.

Let t,#',t" and S be as before. Assume that S has k distinct symbols in
it from 1 to k. Without loss of generality let A(m,m) contain 1, A(m,m+1)
contain 2,..., A(m, m+k—1) contain k. The other cells A(m, j),j > m+k
contain z’s.

For 1< i <k, define T3 to be {{(j,)[1<j S m—1,j #i}U{m,m+
i —1}}. Clearly, T}, T3, ..., T} satisfy Conditions 1-5.

Suppose that T1,T3,...T, for some p > k have been constructed. The
construction for Tp41, for p < m — 2 will now be shown. Let X; = {(3, 5)|T:
has no cell in column j}. X;,Xn,..., X, are disjoint. Let X be their union.
All the symbols in X and S are less than or equal to p. Since the cells in
X are pairwise disjoint, we have | X US| = (p+1)(n —m +1). The symbols
in XUS areeither 1, 2, ..., p, or z.

Since the symbols 1,2,...,p can appear at most p[-"—‘("—_,%ﬁj times
and since (p+1)(n—-m+1) > pLﬂ%L then there is a cell (r, s) €
X U S such that A(r,s) =t > p. Since T, has no cells in row r and since
T, has no cell from column s, if ¢ > m then T, U {(r, s)} is a transversal.
Sot < m — 1. We may assume that A(r,s) = p+ 1 because symbols ¢
and p+ 1, rows t and p + 1, and columns ¢ and p+ 1 can be interchanged.
These interchanges have the effect of interchanging cells A(¢,t) and A(p +
1,p + 1) along with their contents. Since Tp41,Tp42,...,Tm—1 all have
entries A(4,7) = ¢ for p € i € m, Conditions 1-5 are preserved. Since
A(r,8) =p+1, Tryy = T, U {r,s)}\{(p+ 1,p + 1)} is a near transversal
that does not violate Conditions 1-5. Condition 5 is not violated because
at most one new column is used when Ty, is added to 11,7T3,...,T;. In
this way, T1,T%,...,Tm—1 can be constructed.
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Let us now count the 1’s, 2’s, ..., (m —1)’s and z’s in all the rows of the
array. There are m(n—m+1) of them. The maximum number of times that
the symbols 1,2,..., m — 1 can occur in the array is (m — 1) I_ﬁ(""T"_'_"l'uj
times. Since m(n -m+1) > (m - I)Lﬂ""m—"_‘_*'ll)'—lj, we have at least one
z that is not 1, 2, ..., or m — 1. This is a contradiction. O

Note that the difference between the upper and lower bounds is now at
most m.

We now tackle upper bounds. The next result shows that L(m,n) <
B(m,n), at least sporadically, in the range 3 <m < n < m? — 3m + 3.

Theorem 2.3 Let m > 3. Then L(m,n) < B(m,n) forn =m + a(m —
1) +bwherea=0,1,....m—3andb=0,1,...,m -3 —a.

Proof Let a and b be as in the statement of the theorem and consider an
m x (m + a(m — 1) + b) rectangle with m symbols in it in which m — 1 of
the symbols occur |2251]| = m + 1+ b + am times in the rectangle and
one symbol occurs b+ 1 times in the rectangle. Note that these m symbols
fill the array. Call the first m — 1 symbols 1,2,...,m — 1 and call the last
one m. Place m in positions (1,1),(2,2),...(b+ 1,b+ 1). Place symbol i,
i=1,2,3,...b+ 1 throughout row ¢ except for position (4,7). Also place
symbol 7 in the last a+2 rows of column i. Note that a+2+b+1 < m so that
we do not place two symbols in the same cell. Place the rest of the symbols
anywhere. Since there are only m symbols in the m x n rectangle, one of
the symbols m must be in the transversal, say the one in position (¢,7). But
then the it symbol can not be in the transversal and the transversal can
not contain m distinct symbols, i.e. this rectangle contains no transversal.

O

The construction in Theorem 2.3 for n < 2m — 2 is superceded by the
construction in Theorem 1.5. The largest n for which the construction
in Theorem 2.3 works is n = m? — 3m + 3. This leaves a large gap to
the Akbari-et al. [1] result which proved that L(m,n) = [22=1] for n >
2m3 — 6m? + 6m — 1. Before we reduce this gap, we prove a useful lemma.

It is very annoying that when one is trying to prove that all m x n
arrays with fixed maximum frequency have a transversal, there are so many
distributions of the frequencies of the symbols in the array to be considered.
The next lemma reduces the number to be considered considerably. Let f;
be the number of times the symbol i appears in an array.
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Lemma 2.4 If every mxn array whose symbols have a mazimum frequency
[ and whose symbols have a frequency distribution in which f; + f; > f for
any two symbols ¢ and j, has a transversal then any m x n array whose
symbols have a mazimum frequency f must have a transversel.

Proof Consider an array, A, in which it is not true that f; + f; > f for
any two symbols ¢ and j. Form a new array, A’ as follows: Replace any
two symbols ¢ and j with the property f; + f; < f with a new symbol 7'.
Repeat this until we get an A’ that does have the sum of the frequencies of
any two symbols to be greater than f. We know, from the hypothesis, that
A’ has a transversal. If we now consider those positions in A4’, it is easy to
see that they also must be a transversal in A. O

Again we exploit the use of near transversals, to improve the bound on
ng(m). The proof of the following theorem will closely match the proof of
Theorem 2.2. We find a set of near transversals as we did before but we
use different inequalities to get our result.

Theorem 2.5 For m > 2, no(m) < (m —1)(2 + mvm + 3)/2.

Proof We will prove this by induction on m. It is true for m = 2,3. We
assume the hypothesis is true for m — 1. To prove the theorem, we assume
that there exists an m x n array where n > (m — 1)(2 + mv/m + 3)/2 and
where the elements of the array have maximum frequency of B(m,n) = B =
I_"‘"‘lj that does not have a transversal. Consider an m x n array, A with
maximum symbol frequency, B I_""“lj Then there must be at least
m distinct symbols. Consider the symbol with the lowest frequency in the
array A. Let it occur in position (m,m). As in the proof of Theorem 2.2,
consider the array that is formed when row m and column m are deleted
from A. We get ¢, ¢/, t"” and S exactly as before as depicted in Figure 1.
Again z represents a symbol that is a 1,2,..., or (m — 1).

There are 2(n — m + 1) 1’s and z's in rows 1 and m. Recall that 1
is the symbol that occurs the fewest times. There is another symbol that
appears B times. So symbol 1 occurs at most (mn — B)/(m — 1) times.
Since there are at least 2(n — m + 1) 1’s and z’s in rows 1 and m and at
most (mn — B)/(m —1) 'sin A, if 2(n —m +1) > (mn ~ B)/(m — 1), all
the z’s in rows 1 and m could not be 1’s. But is this inequality true? The
answer will come shortly, so let us just take it as true. So there is a symbol
that is not 1 in either row 1 or row m in some column ¢ where ¢ > m. Also
let Ty =t".

Just as in the proof of Theorem 2.2, we will need to prove that there are
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m — 1 near transversals, 71,73, ... Ty each consisting of m — 1 cells, such
that for every 1 <1 < m — 1, the conditions in Table 1 hold. Assume that
S has k distinct symbols in it from 1 to k. Without loss of generality let
A(m,m) contain 1, let A(m, m + 1) contain 2,..., and let A(m,m +k —1)
contain k. The other cells A(m,7),j > m + k contain z’s. For 1 < i <k,
define T; to be {(4,7)|1 < j <m -1, #i}U{m,m+i—1)}. Clearly,
T =", Ty =t",..., T} satisfy Conditions 1-5.

Suppose that T1,T3,...,Ip for some p > k has been constructed. The
construction for T4y, for p < m — 2 will now be shown. Let X; = {(z, 7)|T;
has no cell in column j}. X;, Xs,...,X, are disjoint. Let X be their union.
The symbols in X US are 1,2,...,p. If we don’t know which symbol it is,
we use the symbol z as a place holder. Since the cells in X are pairwise
disjoint, we have | X US| = (p+ 1)(n —m +1).

But how many times can the symbols from 1 to p occur in A? An upper
bound would be pB but symbol 1 can not occur the maximum number of
times permitted as it is the least frequent symbol. So if symbols 2 to p occur
the maximum number of times allowed, they would account for (p — 1)B
occurrences. Then there are mn—(p—1)B places in A for the other elements
in A. There are at least m — p other elements and 1’s frequency (the least
frequent in A) is optimized if its frequency is the same (or almost the sa.me)
as all the others; i.e., I_MJ Soif (p+1)(n+m-1) > (p—l)B+[MJ,
then there is a cell (r,s) € X U S such that A(r,s) =t > p. Agam, we
delay proving the inequality and delay giving the definition of y.

Since 7 has no cells in row r and since T, has no cell from column s,
if t > m then T, U {(r,s)} is a transversal. So ¢t < m — 1. We may assume
that A(r,s) = p+ 1. Since Tp41,Tp42,-- -, Tm—1 all have entries A(%,7) =i
for p < ¢ < m, Conditions 1-5 are preserved. Since A(r,s) = p+ 1,
Trt1 = T, U {(r,s)}\{(p + 1,p + 1)} is a near transversal that does not
violate Conditions 1-4. Condition 5 is not violated because at most one
new column is used when T, is added to T},T5,...,T;.

In this way, T3, T3,. .. and Ty,—1 can be constructed assuming that the
inequality in each case is true.

Let us now count the 1’s, 2’s, ..., (m —1)'s and z’s in all the rows of the
array. There are m(n — m + 1) of them. The maximum number of times
that the symbols 1,2,...,m — 1 can occur is if symbol 1 (the least frequent
symbol) occurs (mn— (m—2)B)/2 times and symbols 2 to m occur B times
each.  m(n —m + 1) > (m — 2)B + (mn — (m — 2)B)/2 which is true for
n > 2(m — 1)? which is true by the hypothesis, we have at least one z that
isnot 1,2, ..., or m — 1. Contradiction of the definition of z.

We now show that the inequalities are satisfied under the conditions of
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the theorem. Depending on k we may have as many as m — 2 inequalities.
The first inequality is slightly different than the others. The first inequality,
2(n—m+1) > (mn — B)/(m — 1) will be true if the second inequality
3(n—m+1) > B+ (mn— B)/(m—1) is true. In general the y** inequality
fory=2,3,....m—1is (y+2)(n-m+1) >yB+(mn—-yB)/(m-y). To
show that inequalities 2,3,...,m — 2 are true, consider the yt* inequality
for 2 < y < m — 1 where B has been substituted by its formula.

We have

— | mr=1
(¥ +2)(n—m+1) >y[";:‘_‘llj 4o myf = ]

]

This will be true if:

(mn—y|Z25L))

(y+2)n—-m+1)> yl_fzzn__llj +

m-y
> (m —y - 1) 2L
ym-—-y-—- ‘m—1 mn
+2)n-m+1)> e +m—y'
This will be true if:
ym-y-1)2l gy
y+2)n-m+1)> e +m—y'

The above implies that:

(m-12m-y)y+2)-ym-y-1)
2+ (2-2m)y+ (m2 —-m) )

n>

This will be true if:

(m-12m-y)y+2) _ (m=-1)*(-1>+(m—2)y+2m)
¥+ 2-2my+(m?-m) y?+(2-2mly+(mi-m) °

n >

Consider the right hand side of the inequality as a function in y; i.e.,
f(y). Clearly, this is a quadratic in y over a quadratic in y. To find the
maximum value of this function over the appropriate range of y we find
the critical points. Since the discriminant of the denominator of f(y) is
(2 = 2m)? — 4(1)(m? —m) = 4 — 4m < 0 for m > 2, the denominator has
complex roots. Then to find the critical points of f(y) we set the numerator
of the derivative , f/, to 0 and get

(—(2—2m) —m+2)y?* +2(-m?+m—2m)y+(m*-m)(m—2)—2m(2—2m) = 0
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which simplifies to

¥ =2m+1)y+mi+m-2)=0.

Solving we get

y=(m+1)+vm+3.

The positive root is never in the range of y so we only use the negative root.
Substituting the negative root into the function we get that f(y) has max-
imum value (m — 1)(2+mv/m +3)/2. Soif n > (m — 1)(2+ my/m + 3) /2
then all the inequalities will be true and we get a contradiction that y will
be less than p and bigger than p at the same time. O

We give a table comparing the value 2m3 —6m?+6m—1, [(m-1)(2+
myv/m + 3)/2], and the first value of n, for which all y inequalities are true
and stay true for larger n. This number is an upper bound for ngo(m).

n|2m®-6m*+6m—1] [(m—-1)(2+mvm+3)/2] | no(m) <
3 17 10 8
4 55 19 18
5 129 33 31
6 251 50 49
7 433 73 70
8 687 100 96
9 1025 133 125
10 1459 172 166
11 2001 216 213
12 2663 267 266

There is still a gap in the leading term, n? to n5, from where the
largest known value of n where L(m,n) # B(m,n) to the smallest value of
no where we know that L(m,n) = B(m,n) for all n > n,.

We now show that the asymptotic result is true for even smaller n when
m = 4. Even though we later prove the case n = 11, it is included here for
those people who dislike computer proofs.

Theorem 2.6 L(4,n) = |4537] forn > 11.

Proof Consider a 4 x n array A with maximum frequency B(m,n) where
n > 11. Since there must be at least one symbol of frequency B(4,n) =
|42=1], then a least frequent symbol occurs at most |(4n — (4272 ])/3]
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1 2|z
1 x| =
2
3
Figure 2:

times. In order to get a contradiction, we assume that there exists an array
which has no transversal and whose elements have maximum frequency of
l4n—1 J

The next part of the proof follows the proof of Theorem 2.5 very closely.
Let symbol 1 be one of the least frequent symbols in A. So symbol 1 occurs
at most | (4n — |4%72])/3] times. Let the symbol be 1 and, without loss of
generality, let 1 be in A(1,1). Then consider A with row 1 and column 1
deleted. This new array is 3 x (n — 1) and has maximum frequency [4"‘ fncll,
Since L(3,n — 1) = [384] for n — 1 > 4, and since |48~ < [3"‘4J
for n > 11, we know that the 3 x (n — 1) array has a transversal If this
transversal has A(1,1) attached to it, the positions form a section in the
4 x n array. If the section is a transversal we are done. I not, there
must be two symbol the same in the section. Without loss of generality let
the symbol be 1 and let it occur in A(1,1) and A(2,2). Also let A(3,3)
hold symbols 2 and A(4,4) hold symbol 3. Then A(1,j) and A(2,j) for
j=35,6,...,m hold an z which may bea 1, 2 or 3.

In A, the first two rows have n — 3 positions filled in. Could the entries
all be 1’s? Since 2(n — 3) > |(4n — [#572])/3] for n > 11, all the 2z’s are
not 1’s. So without loss of generality, let A(1,5) hold symbol 2 as shown
in Figure 2.

Because A(1,5),A(2,2) and A(4,3) is a near transversal there are at
least n — 3 x’s and 2’s in the third row of A. Now symbol 2 may be
the most frequent symbol in the array so the sum of the frequencies of
symbol 1 and 2 is at most |(4n — [4"‘1J)/3J + [#27L]). Since 3(n - 3) >
L(4n— | 4272 ))/3) + | 4572 | for n > 12 the z’s can not all be 1's and 2’s in
the first three rows. So there is a 3 somewhere in the first 3 rows and first
6 columns of A. This 3 will be in a transversal if we consider just the array
of the first 3 rows. Then the last row must contain n — 4 z’s to prevent the
transversal in the 4 x n array. In the case of n = 11, the z’s could just all
be 1's and 2’s in the first 3 rows. But A(2,6) is either a 1 or a 2. Ifit is a
1 then it forces an z into A(1,2) or if it is a 2 it forces an z into A(3,2).
Then there must be a 3 in the first 3 rows and first 6 columns of A and as
before to prevent a transversal there are n — 4 z’s forced into the fourth
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Figure 3:

row, Without' loss of generality, we have Figure 3.

Note that at least two of the ?’s are z’s; i.e., symbols 1, 2 or 3. If
n > 18, then by Theorem 2.5 we would be done as there would be too
many z’s that would have to be 1, 2 or 3’s. For 11 < n < 18, we get no
contradiction but we do get a lower bound on the frequency of the symbols
larger than 3 in A. In Figure 3, there are at most 12 positions in A which
could hold a symbol larger than 3. If these positions were filled with two or
more symbols greater than 3, then the sum of the frequency of these two
symbols would be less than B(4,n) = | 42~1]. In this situation, Lemma 2.4
implies that we need only consider the case when there is one symbol in A
greater than 3, say 4. Symbol 4 can only occur in either the empty cells or
in three of the “?” occupied cells in Figure 3. Symbol 4 and symbols 1, 2
and 3 fill these 12 cells. Let f; be the frequency of symbol 7 in the array.
Then fi + fo + f3 + fa = 4n. Since fo and f; are less than or equal to
[4272], fr + fa > 4n — 2| 287L|. Since fy > fi. Then f; > 2n — |487L],
Forn > 11, f, > 8.

Because there are no transversals in A, putting symbol 4 into a cell of
A forces some of the symbols not to be in some row beyond column 6 and
forces other symbols to be in that row beyond column 6. For instance,
if A(1,3) = 4, then there is a near transversal A(1,3) = 4,A(2,2) = 1
and A(4,4) = 3. Then the z’s in the third row beyond column 6 must be
1’s and/or 3’s but not 2’s. Table 1 shows the near transversals and their
implication for the symbols in the rows beyond column 6.

So, let A(2,3) contain a 4. Then result 5 says row 3 beyond column
6 contains only 3’s. But these new 3’s are also in near transversals (with
A(1,5) and (2, 2)) that force z’s into A(4, 1), A(4,3) and A(4,6). Also, these
new 3's form near transversals with A(2,3) = 4 and A(1,5) = 2 forcing row
4 beyond row 6 not to have any 1’s. Further. these new 3’s are in near
transversal with A(2,3) =4 and A(1,1) = 1 forcing row 4 beyond column
6 to not contain any 2’s. So row 4 beyond column 6 is all 3’s. The new
3’s in row 4 beyond column 6 form near transversals with A(3,3) = 2 and
A(2,2) = 1toforce an z in A(1,4); with A(3,3) = 2and A(1,1) = 1 to force
an z in A(2,4); with A(1,5)=2 and A(2,2)=1 to force an z in A(3,4). Now
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Symbol is not

P
3

Result Near transversal

1 A(1,2)=4 A(3,3)=2 A(4,4)=3
2 A(1,3)=4 A(2,2)=1 A(4,4)=3
3 A(1,4)=4 A(2,2)=1 A(3,3)=2
da | A(2,1)=4 A(3,3)=2 A(4,4)=3
4b A(2,1)=4 A(1,5)=2 A(4,4)=3
5a A(2,3)=4 A(1,1)=1 A(4,4)=3
5b A(2,3)=4 A(1,5)=2 A(4,4)=3
6 A(2,4)=4 A(1,1)=1 A(3,3)=2
7a A(3,2)=4 A(1,1)=1 A(4,4)=3
7b A(3,2)=4 A(1,5)=2 A(4,4)=3
8 A(3,4)=4 A(1,5)=2 A(2,2)=1
9a A(3,5)=4 A(1,1)=1 A(4,4)=3
9b A(3,5)=4 A(2,2)=1 A(4,4)=3
10a | A(4,1)=4 A(2,2)=1 A(3,3)=2
10b | A(4,1)=4 A(2,2)=1 A(1,5)=2
11 A(4,2)=4 A(1,1)=1 A(3,3)=2
12 A(4,3)=4 A(1,5)=2 A(2,2)=1
13a | A(4,5)=4 A(1,1)=1 A(3,3)=2
13b | A(4,5)=4 A(2,2)=1 A(3,3)=2
14a | A(4,6)=4 A(1,1)=1 A(3,3)=2
14b | A(4,6)=4 A(2,2)=1 A(3,3)=2
14c | A(4,6)=4 A(1,5)=2 A(2,2)=1

CO k= D N 0O NGO DD RN DD RGO R N

QO 00000 WWOWWNDNDNWS R WM N QN -

Table 1: Effect of near transversals beyond column 6

there is just enough room for 8 4’s in the array. So all the empty positions
in the array must be 4’s. Then result 4a says A(2,1) = 4 implies that row 1
beyond column 6 can not contain 1’s and result 9b says A(3,5) = 4 implies
that row 1 beyond column 6 can not contain 2’s. So row 1 beyond column
6 contains 3’s. Then rows 1, 2 and 3 beyond column 6 contains 3(n — 6)
3's. Since 3(n — 6) > [ 4871 | for n > 11, we get a contradiction. So A(2,3)
contains an z. There are now 11 positions that could hold a 4 in the array.

Suppose A(3,2) contains a 4, then result 7 says that row 2 beyond
column 6 contains only 3’s. These 3’s are in near transversals which force
z’s into A(4,2), A(4,5) and A(4,6). Then there are only 10 positions for
the 4’s. Now these new 3’s with A(3,2) and A(1,1) force row 4 beyond
column 6 not to contain any 2’s. Also these new 3’s with A(3,2) and
A(1,5) force row 4 beyond column 6 not to contain 1’s. So row 4 beyond
column 6 contains only 3’s. But, if A(1,4), A(2,4) or A(3,4) were 4’s then
they would be in transversals so they must contain z's. But now we have
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room for only seven 4’s in our array and this is a contradiction. So A(3,2)
must contain an z. There is only room for 10 4’s in our array.

Let us now assume that A(2,1) = 4, then result 4 implies that rows 1
and 3 beyond column 6 and do not contain 1’s. If we further assume that
A(3,5) = 4 then result 9 implies that rows 1 and 2 beyond column 6 do
not contain 2’s. So row 1 beyond column 6 contains 3's. So the new 3’s are
in near transversals forcing A(4,1),A(4,5) and A(4,6) to contain z’s. So
there are 9 spots for the 4's. Two of the new 3’s along with A(2,1) = 4 and
A(3,3) = 2 force row 4 beyond column 6 to not contain 1’s. Also one of the
new 3’s along with A(3,5) = 4 and A(2,2) = 1 force row 4 beyond column 6
to not contain 2’s. So row 4 beyond column 6 must contain 3’s. But then if
A(1,4),A(2,4) or A(3,4) contained 4's they would be in transversals which
would be a contradiction. So they contain z’s. But that would leave only
6 spots in the array for the 4’s which is a contradiction.

So if A(2,1) = 4 then A(3,5) = z and there are 9 spots for the 4’s.
Let us now assume that A(1,3) = 4. Result 2 implies that row 3 beyond
column 6 can not contain 2’s. We already know it can not contain 1’s so it
must contain 3’s. Any one of these 3’s are in near transversal that forces
A(4,1),A(4,3) and A(4,6) to contain z's. There are 8 spots for the 4’s
now. Assume that A(4,5) = 4. By result 13b, we know that row 1 beyond
column 6 can not contain 3’s. Since we already know that it can not contain
1’s it must contain 2’s. Now a new 2 and a new 3 in different columns along
with A(4,5) =4 a A(2,2) = 1 form a transversal so A(4,5) must contain
an z. This is a contradiction as there are only 7 spots for the 4’s in the
array. So A(1,3) can not be a 4 and must be an z.

So we have A(2,1) = 4 with A(1,3) = z and A(3,5) = = with 8 spots
for the 4’s. We also have the row 1 beyond column 6 and row 3 beyond
column 6 can not contain 1’'s. We now know that A(1,2), A(1,4), A(2,4)
and A(3,4) are 4’s. So result 1 gives that row 2 beyond column 6 can not
be 1’s also. Now 3 of the 5 non-determined spots in row 4 must be 4’s. If
A(4,6) = 4, then result 14 gives that the rows 1, 2, 3 beyond column 6 can
not be 3’s and so must be 2’s. This is too many 2’s so A(4,6)=z. We get the
same contradiction if we assume that A(4,1) = A(4,2) = 4 using results
10 and 11, So only at most 1 of A(4,1) and A(4,2) can be a 4. Similarly,
using results 12 and 13, only one of A(4,3) and A(4,5) can be a 4. Hence
there can only be at most seven 4’s in the array. Contradiction.

So we have that A(2,1),A(3,2) and A(2,3) are all z’s and there are
9 possible places in the array for the at least 8 4’s. Now assume that
A(3,5) = 4. Result 9 gives that rows 1 and 2 beyond column 6 can not
contain 2's. If we further assume that A(1,2) = 4 then result 1 gives that
row 2 beyond column 1 contain no 1’s so it must contain only 3’s. Now these
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3’s in row 2 along with A(3,3) = 2 and A(1, 2) = 4 force that row 4 beyond
column 6 can not contain 1’s. Also the 3's in row 2 along with A(1,1) =1
and A(3,5) = 4 force row 4 beyond column 6 to not contain 2's. So row 4
beyond 6 must contain 3’s. Now A(4,7) = 3, A(3,3) = 2, A(2,2) =1 force
A(1,4) = z. Also A(4,7) =3,A(3,3) =2 and A(1,1) = 1 force A(2,4) = z.
But this is a contradiction as there are only 7 spots for the 4’s in the array.
So A(1,2) can not contain a 4 but must contain a z.

So if A(3,5) = 4 then A(1,2) = z and there are 8 places for the 4’s. So
A(1,3) = A(1,4) = A(2,4) = A(3,4) = 4 and we have that rows 1, 2, 3
beyond column 6 can not be 2’s using results 2 and 9. We now repeat the
argument from two paragraphs before about 4’s in row 4 to get the same
kind of contradiction as before.

So now we have A(3,5) = A(2,1) = A(2,3) = A(3,2) = z and there
are 10 places to put the 8 4’s with 3 of the 4's being in row 4. So we know
that A(1,3) = A(1,4) = A(2,4) = A(3,4) = 4. By results 1 and 2 we know
that the cells in row 2 beyond column 6 can not be 1’s and the cells in row
3 beyond column 6 can not be 2’s. Then, if A(4,6) = 4, result 14 implies
that there are no 3's in rows 1, 2 and 3 beyond column 6. Then in row 2
beyond column 6 we have 2’s and and in row 3 beyond column 6 we have
1’s. Then A(2,7) = 2, A(3,8) = 1, A(4,4) = 3 and A(1,3) = 4. This is
a contradiction so A(4,6) = z. Similarly, one of A(4,1) and A(4,2) is an
z and one of A(4,3) and A(4,5) is an z. So there is space in A for only
7 4's. This is our final contradiction. So our assumption that there is an
array with symbols having a maximum frequency of | 422 and with no
transversal is false. 0

We will use the near transversal concept, one more time to get a back-
track program to show that if an array has maximum frequency of f =
B(4,n) then it must have a transversal. Consider the situation in figure 3.
Those z’s could be filled in with 1’s, 2’s or 3’s in a backtrack manner. As
you fill them in then more near transversals are formed forcing more posi-
tions that must contain an z. The process stops in one of two ways. Either
you run out of z’s and the algorithm is stuck or the frequency of 1, 2 or
3 or the sum of the frequencies of 1, 2, 3, z becomes too large. In these
cases, we backtrack. When m = 4 and n=8, 9, 10 and 11, this was done
and the algorithm never got stuck. These results and the fact that L(4,7)
equals 8 < 9 = B(4,7) prove the following theorem.

Theorem 2.7 no(4) = 8.

Then, using the table from Stein and Szab6 [4] and the previous theorem
we have now determined L{4,n).
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3 Conclusion

We have shown that the difference between the upper bound and the lower
bound for L(m,n) is at most m. Then we have shown that ng(m) is less
than or equal to [ﬂﬁ';"i—"l'}-)"—’_l. The last thing we did was to determine
L(4,n) for all n. We now conjecture how L(m,n) behaves for m > 4. Our
conjecture is modified from Stein’s conjectures. The most interesting area
for L(m,n) is from n = m to n = 2m — 2 where we know little for m > 4.
There seems to be a discontinuity at » = 2m—1. For n > 2m — 1, we think
that either L(m,n) = B(m,n) or for those values of n in Theorem 2.3,
L(m,n) = B(m,n) — 1. This conjecture is true for n = 2,3 and has now
been proven for n = 4 also.
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